
Université de Montréal

On the Fly Type Specialization without Type Analysis

par Maxime Chevalier-Boisvert

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des études supérieures
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

Décembre, 2015

c© Maxime Chevalier-Boisvert, 2015

RÉSUMÉ

Les langages de programmation typés dynamiquement tels que JavaScript et Python

repoussent la vérification de typage jusqu’au moment de l’exécution. Afin d’optimiser la

performance de ces langages, les implémentations de machines virtuelles pour langages

dynamiques doivent tenter d’éliminer les tests de typage dynamiques redondants. Cela

se fait habituellement en utilisant une analyse d’inférence de types. Cependant, les ana-

lyses de ce genre sont souvent coûteuses et impliquent des compromis entre le temps de

compilation et la précision des résultats obtenus. Ceci a conduit à la conception d’archi-

tectures de VM de plus en plus complexes.

Nous proposons le versionnement paresseux de blocs de base, une technique de com-

pilation à la volée simple qui élimine efficacement les tests de typage dynamiques redon-

dants sur les chemins d’exécution critiques. Cette nouvelle approche génère paresseuse-

ment des versions spécialisées des blocs de base tout en propageant de l’information

de typage contextualisée. Notre technique ne nécessite pas l’utilisation d’analyses de

programme coûteuses, n’est pas contrainte par les limitations de précision des analyses

d’inférence de types traditionnelles et évite la complexité des techniques d’optimisation

spéculatives.

Trois extensions sont apportées au versionnement de blocs de base afin de lui donner

des capacités d’optimisation interprocédurale. Une première extension lui donne la pos-

sibilité de joindre des informations de typage aux propriétés des objets et aux variables

globales. Puis, la spécialisation de points d’entrée lui permet de passer de l’information

de typage des fonctions appellantes aux fonctions appellées. Finalement, la spécialisa-

tion des continuations d’appels permet de transmettre le type des valeurs de retour des

fonctions appellées aux appellants sans coût dynamique. Nous démontrons empirique-

ment que ces extensions permettent au versionnement de blocs de base d’éliminer plus

de tests de typage dynamiques que toute analyse d’inférence de typage statique.

Mots clés: compilation à la volée, optimisation, typage dynamique, code, ana-

lyse, performance.

ABSTRACT

Dynamically typed programming languages such as JavaScript and Python defer type

checking to run time. In order to maximize performance, dynamic language virtual

machine implementations must attempt to eliminate redundant dynamic type checks.

This is typically done using type inference analysis. However, type inference analyses

are often costly and involve tradeoffs between compilation time and resulting precision.

This has lead to the creation of increasingly complex multi-tiered VM architectures.

We introduce lazy basic block versioning, a simple just-in-time compilation tech-

nique which effectively removes redundant type checks from critical code paths. This

novel approach lazily generates type-specialized versions of basic blocks on the fly while

propagating context-dependent type information. This does not require the use of costly

program analyses, is not restricted by the precision limitations of traditional type analy-

ses and avoids the implementation complexity of speculative optimization techniques.

Three extensions are made to the basic block versioning technique in order to give

it interprocedural optimization capabilities. Typed object shapes give it the ability to

attach type information to object properties and global variables. Entry point special-

ization allows it to pass type information from callers to callees, and call continuation

specialization makes it possible to pass return value type information back to callers

without dynamic overhead. We empirically demonstrate that these extensions enable

basic block versioning to exceed the capabilities of static whole-program type analyses.

Keywords: JIT, VM, compiler, dynamic typing, optimization, code, analysis,

performance.

CONTENTS

RÉSUMÉ . ii

ABSTRACT . iii

CONTENTS . iv

LIST OF APPENDICES . viii

LIST OF ABBREVIATIONS . ix

PREFACE . x

ACKNOWLEDGMENTS . xii

CHAPTER 1: INTRODUCTION . 1

1.1 Contributions . 2

1.2 Structure of this Document . 2

CHAPTER 2: BACKGROUND . 4

2.1 Dynamic Programming Languages . 4

2.2 JavaScript . 6

2.3 Early History of Dynamic Language Optimization 9

2.4 State of the Art JavaScript VMs . 11

2.4.1 Tricks of the Trade . 13

2.5 Summary . 16

CHAPTER 3: A SELF-HOSTED JAVASCRIPT VM 17

3.1 Design of Tachyon . 17

3.2 From Tachyon to Higgs . 18

3.3 DLS 2011 Article . 20

CHAPTER 4: EAGER BASIC BLOCK VERSIONING 32

4.1 Problem and Motivation . 32

4.2 Basic Block Versioning . 34

4.3 Results . 35

4.4 CC 2014 Article . 37

CHAPTER 5: LAZY BASIC BLOCK VERSIONING 59

5.1 A Problem with Eager BBV . 59

5.2 Laziness . 60

5.3 Results . 61

5.4 ECOOP 2015 Article . 63

CHAPTER 6: TYPED OBJECT SHAPES 87

6.1 Problem and Motivation . 87

6.2 Whole-Program Analysis . 88

6.3 Typed Shapes . 89

6.4 Results . 89

6.5 CGO 2016 Article . 91

CHAPTER 7: INTERPROCEDURAL BASIC BLOCK VERSIONING . 102

7.1 Problem and Motivation . 102

7.2 Interprocedural Versioning . 102

7.3 Alternative Solutions . 103

7.4 Results . 104

7.5 ECOOP 2016 Article . 105

CHAPTER 8: ADDITIONAL EXPERIMENTS 129

8.1 Overflow Check Elimination . 129

8.1.1 Problem Description . 129

8.1.2 The Optimization . 130

8.1.3 Results . 131

v

8.2 Interprocedural Shape Change Tracking 133

8.2.1 Problem Description . 133

8.2.2 The Optimization . 133

8.2.3 Results . 134

8.3 Versioning and Register Allocation . 136

8.3.1 The Problem . 136

8.3.2 The Optimization . 136

8.3.3 Results . 137

8.4 BBV and the Instruction Cache . 138

8.5 Microbenchmarks . 139

8.6 Summary . 141

CHAPTER 9: FUTURE WORK . 143

9.1 Incremental Inlining . 143

9.2 Multi-Stage Fallback . 144

9.3 Adaptive Recompilation . 144

9.4 Adaptive Ordering of Type Tag Tests 145

9.5 Propagating Facts instead of Types . 146

9.6 Array Specialization . 147

9.7 Array Bounds Check Elimination . 147

9.8 Closure Variable Awareness . 148

9.9 Allocation Sinking . 148

9.10 Lazy, Deferred Computations . 149

9.11 IR-level versioning . 150

9.12 Fragment Optimization . 150

9.13 Garbage Collector Optimizations . 151

9.14 IR Performance Optimizations . 151

9.15 Summary . 152

CHAPTER 10: CONCLUSION . 153

vi

BIBLIOGRAPHY . 156

vii

LIST OF APPENDICES

Appendix I: Runtime Primitives . xiii

Appendix II: Microbenchmarks . xvi

LIST OF ABBREVIATIONS

AOT Ahead-Of-Time (before a program is executed)

AST Abstract Syntax Tree

BBV Basic Block Versioning

CPU Central Processing Unit

DOM Document Object Model

ES5 ECMAScript version 5 (JavaScript specification)

GC Garbage Collector

HTML HyperText Markup Language

ILP Instruction-Level Parallelism

IR Intermediate Representation

JIT Just-In-Time (or just-in-time compiler)

JS The JavaScript programming language

ML Machine Learning

NaN The special Not-a-Number floating-point value

OSR On-Stack Replacement

PIC Polymorphic Inline Cache

RAM Random Access Memory

SSA Static Single Assignment form

VM Virtual Machine

V8 Google V8 JavaScript virtual machine

PREFACE

I discovered the world of dynamic language optimization during my master’s degree

at McGill University, under the supervision of Prof. Laurie Hendren. My thesis was

to be focused on the design and implementation of McVM, an optimizing virtual ma-

chine for the MATLAB programming language [9]. I believe what Prof. Hendren had

in mind, when she suggested I take on this project, was that I would work on compiler

optimizations specifically related to numerical computing.

What really struck me, instead, is that MATLAB is a dynamically typed, late-bound

programming language. The semantics of the language imply that variables can change

type at run time, and that dynamic type tests are needed to implement the bulk of oper-

ations. It seemed intuitively obvious to me that there had to be a way to eliminate much

of these type tests, since in practice, in a given program, most variables do not change

type. It was necessary to achieve this in order to obtain good performance, but none of

the static, AOT program analysis techniques I’d read about seemed adequate. It was an

unsolved problem, and this greatly stimulated my curiosity.

JIT compilers generate code at run time. This can be seen as limiting, because the

time budget for compiling and optimizing code is smaller than with an AOT compiler.

The flip side of this, however, is that JIT compilers have an amazingly powerful tool

at their disposal: they can observe running programs while optimizing them. The key

insight of my master’s thesis was that it’s possible to leverage this ability, in a small way,

to optimize dynamically typed programs. By lazily compiling methods and intercepting

their argument types, one can generate type-specialized versions of the said methods.

McVM was built around this principle, and we were able to outperform the MathWorks

MATLAB compiler on several benchmarks.

In 2009, I went on to do a Ph.D. at the Université de Montréal. I didn’t go into

compiler research, but instead joined the machine learning lab. I loved compilers and

programming languages, but I had convinced myself that I should be working in ML

as it seemed like a more important field for the future of mankind, or something to that

effect. Unfortunately, it became obvious to me after just a few weeks that this was the

wrong decision. I was having difficulty finding motivation to work on ML research, and

I found myself spending a lot of time thinking about McVM. I had drawn up a long list

of improvements I could make upon my master’s research. This is when I decided to

rearch out to Prof. Marc Feeley.

I came to see Prof. Feeley with the goal of working on a hybrid type analysis for

dynamic languages. That is, a type analysis that’s able to speculate and update itself as a

program runs, interleaving execution and analysis. Prof. Feeley was somewhat skeptical

of the concept, but was also eager to have me onboard and willing to give this project a

chance. It was decided that we would implement a JavaScript VM, in large part because

it was obvious that this programming language was rapidly growing in popularity, but

also because its specification was relatively simple.

My PhD has taken over six years to complete, and it’s not been a walk in the park.

I’ve seriously considered giving up on more than one occasion, but I persevered because

I love what I do. I like research, and I find this work interesting. As Ernest Hemingway

said, “It is good to have an end to journey toward; but it is the journey that matters, in the

end.” Along the way, I’ve learned countless things, published my research, been invited

to speak about my work at five industry conferences, started making a name for myself

and received a job offer before I’d even graduated. In the end, I believe that the effort

was worth it. I’m proud of what I’ve accomplished.

Maxime Chevalier-Boisvert, Montreal, February 1st, 2016

xi

ACKNOWLEDGMENTS

Thanks to my thesis advisor, Marc Feeley, for putting up with my stubbornness and

for standing by me during difficult times. It took me over six years to complete my PhD,

and it has been trying at times, but thanks to you, I am a better scientist.

Thank you Erinn Di Staulo, Catherine Gagnon, Christian Yelle and Jonathan Joseph

for your help and emotional support throughout the last few years.

Thank you Laurie Hendren, Jan Vitek, Erick Lavoie, Vincent Foley, Paul Khuong,

Carl Friedrich Bolz and Jacques Amar for the invaluable advice and help you’ve pro-

vided in preparing publications and completing my thesis.

Thanks to Molly Everett, Brett Fraley, Simon Bernier St-Pierre, Rajaram Gaunker,

Gianluca Stivan, Olivier Matz and all of those who have contributed to the development

of the Higgs VM.

Thanks to the D programming language community for being so welcoming and

supportive of my work, as well as for the public exposure you have given my research.

This work was supported, in part, by the Natural Sciences and Engineering Research

Council of Canada (NSERC) and by Mozilla Corporation. Many Ph.D. candidates strug-

gle to make ends meet during their studies, which can be a major cause of stress. Thanks

to these organizations, I was never put in such a position, and I am very grateful for this.

CHAPTER 1

INTRODUCTION

The last two decades have seen a rise in the popularity of dynamically-typed pro-

gramming languages such as Python, PHP and JavaScript, driven by the belief that fea-

tures such as dynamic type checking and late-binding reduce the learning curve and

vastly increase developer productivity. The establishment of JavaScript as the only lan-

guage able to run in a web browser made it necessary to find ways to optimize dynamic

languages. This is a challenging problem because features such as late-binding, dy-

namic type-checking, dynamic code loading and the infamous eval construct make

AOT whole-program analyses largely inapplicable.

Recently, there have been advances in the use of hybrid type analyses in commercial

JavaScript VMs. Unfortunately, these come with a few disadvantages. The first is that

such analyses can be complex to implement, relying on mechanisms such as On-Stack

Replacement (OSR). The second is that due to high compilation-time costs, these remain

limited to long-running programs only. Lastly, as we will expand upon in later chapters,

there are precision limitations inherent to traditional type analyses.

This thesis is an exploration of Basic Block Versioning (BBV), a new kind of JIT

compiler architecture lying somewhere between method-based and trace compilation.

With BBV, individual basic blocks are compiled one at a time and specialized based

on accumulated type information. The technique relies on controlled tail duplication,

that is, the selective versioning (cloning) of basic blocks, to extract and propagate type

information.

One of the main strengths of the BBV technique is its conceptual simplicity and its

relatively low overhead. It does not use profiling or type analysis in the traditional sense.

Code is specialized on the fly, in a single pass, as it is generated, without the use of an

iterative fixed point analysis. It is the execution of programs, and the code paths taken at

run time, which drive the versioning and code specialization process.

The main metric we have focused on, throughout this work, is the number of dynamic

type tests performed with and without specific optimization techniques. Code is special-

ized in other ways besides the elimination of type tests, but this single metric gives us a

good insight into how well our approach is doing in the realm of type-specialization.

Other metrics we have focused on throughout this research are machine code size

and execution time. Code size is an indirect reflection of code quality. That is, code that

is smaller in size usually contains fewer instructions, and so has been more effectively

optimized. Our insistence on code size also stems from the need to deflect an obvious

criticism of basic block versioning: the possibility of a code size explosion.

Execution time is probably the most often cited performance metric in compiler re-

search, and successfully reducing it shows that our optimizations are working effectively.

This is important because it is possible to reduce a metric such as the number of type

tests executed without producing measurable performance gains. Reductions in execu-

tion time are the ultimate concrete proof that a performance optimization is effective.

1.1 Contributions

This thesis makes four main contributions.

1. The Basic Block Versioning (BBV) approach to compilation, and its use for type-

specializing programs (Chapter 4).

2. The augmentation of BBV with the lazy, incremental compilation of basic blocks

(Chapter 5).

3. The integration of typed shapes in a BBV system, by using BBV to generate

versions based on object shapes (Chapter 6).

4. The addition of interprocedural type propagation strategies to BBV, making it

possible to pass type information from callers to callees and back (Chapter 7).

1.2 Structure of this Document

Chapter 2 begins by introducing background material that is useful in understanding

this thesis, but is not covered in depth as part of the articles included in subsequent

2

chapters. This includes a discussion of dynamic programming languages, JavaScript,

and modern performance optimizations techniques for dynamic languages

Five articles submitted as part of this thesis are presented in Chapters 3 to 7. The

first introduces the Tachyon self-hosted VM for JavaScript. The next four explain the

BBV technique, as well as several improvements and additions made to it. Each article

is preceded by a high-level discussion of its goals, contents and findings.

Additional experiments and additional data gathered about BBV but not included in

published articles are presented in Chapter 8.

Finally, Chapter 9 provides an extensive survey into possible directions of future

research and Chapter 10 presents some concluding remarks.

3

CHAPTER 2

BACKGROUND

This chapter discusses background information useful in understanding the research

work presented in the following chapters. We will discuss dynamic programming lan-

guages, their origin and key features, the JS language and its role in our research, dy-

namic language optimization and state of the art JS VMs.

2.1 Dynamic Programming Languages

Dynamic programming languages are a loosely-defined family of programming lan-

guages incorporating dynamic typing, late binding, garbage collection and dynamic code

loading (i.e. eval). This includes JavaScript, Python, Ruby, MATLAB, PHP, Scheme,

Smalltalk and Perl. Dynamic languages can be compiled ahead of time, but modern

implementations typically rely on an interpreter or JIT compiler instead.

The first dynamic language was LISP [31], originally specified by John McCarthy

in 1958. This programming language originally executed in an interpreter and featured

a read-eval-print loop (REPL), allowing programmers to enter code at a console and

obtain immediate feedback. This was quite remarkable at the time, since much pro-

gramming work was still being done using punched cards, which were cumbersome and

error-prone.

LISP was inspired by the untyped lambda calculus [11], and introduced the concept

of dynamic typing. Dynamic typing was likely motivated by the need to do away with

type annotations to keep the notation short, making programming in a REPL more prac-

tical. Another motivation may have been that the static type systems of the time were

cumbersome and weak. That is, when LISP was created, Hindley-Milner type infer-

ence [32] had not yet been invented. Static typing usually meant decorating all function

arguments and variable declarations with type annotations and relying on unsafe type

casting operators to circumvent limitations of the type system.

Garbage collection was also invented by John McCarthy for LISP. The language

relied on linked list manipulation for computation. This meant that many temporary

objects were allocated. Relying on the programmer to manually deallocate all these

objects proved to be error-prone and tedious, particularly when programming in a REPL.

Hence, LISP instead featured a copying Garbage Collector (GC) which would collect

unreachable objects automatically.

With late binding, method names (both global and local) are resolved at the time

of calls rather than ahead of time. This means methods can generally be redefined at

any point during execution. This is in contrast with programming languages such as C,

where the compiler resolves function calls at compilation time, and functions cannot be

redefined during execution. Late binding poses some difficulty for optimizing compilers,

as it means that the target of a given function call could change during the execution of

a program.

Dynamic code loading refers to the ability to load and execute new source code at any

point during a program’s execution. This is typically embodied by the eval function,

which allows evaluating the value of arbitrary strings of source code. The eval function

was originally introduced by the LISP programming language, and gave programmers

direct access to the LISP interpreter from within LISP programs. This function embodies

one of the main tenets of LISP, which is that programming code is representable as data,

and data can also be interpreted as code.

The presence of the eval construct makes dynamic languages notoriously difficult

to optimize through program analysis, because its presence implies that, at any given

time during a program’s execution, parts of the program may be essentially unknown.

That is, the eval function makes it possible to introduce arbitrary code which breaks

properties previously proved by program analysis. As such, many ahead of time program

analyses are unsound in the presence of the eval construct.

5

2.2 JavaScript

The research presented in this thesis should be applicable to any dynamic language.

We have chosen to work with the JavaScript (JS) programming language (ECMAScript

5 [24]) because JS has the features typical of most dynamic languages, is widely-used

in the real world, and has a fairly simple specification, which made it feasible for us to

implement a JS compiler from scratch.

JavaScript is a dynamic programming language with object-oriented features and

functional capabilities (i.e. nested functions and closures). It was originally created by

Brendan Eich in 1995, while he was working on the Netscape Navigator web browser.

The language was then meant to be a lightweight client-side scripting language that

would compete with Microsoft’s Visual Basic. Despite what the name suggests, JS is

not directly related to the Java programming language.

The JS language features a few basic types: booleans, numbers, immutable strings,

arrays, objects and closures. There are also two special constants: null and undefined

which have special meaning. The language specification states that all JS numbers are

double-precision floating-point values [24]. There is no distinct integer type in the lan-

guage. This choice was made to ease the learning curve for beginners.

JS is dynamically typed. It features no type annotations and no compile-time type

checking. Figure 2.1 shows a JS function in which both parameters can have various

types in different contexts, and the return value can be either an integer or a boolean.

In dynamic languages such as JS, type errors only manifest themselves at execution

time, when evaluating an operator with operands of inappropriate types. Some opera-

tions will produce an exception, but others may silently fail, that is, produce an erro-

neous value without an exception being thrown. For instance, reading an uninitialized

variable or a non-existent object property will produce the special undefined value.

Also, arithmetic operators in JS can accept all input types, but some combinations of

input values are invalid and yield no numerical result (e.g. undefined + 1). These

produce the special NaN (Not-a-Number) value.

Very few operations in JS throw exceptions on invalid inputs, most silently fail in-

6

/**
Function which returns the index of a value in an array-like
object. The function can accept arrays, strings, or anything
else with a ’length’ and integer-keyed properties.

*/
function indexOf(array, value)
{

for (var i = 0; i < array.length; ++i)
if (array[i] == value)

return i;

// If value is not found, the boolean false is returned
return false;

}

// Arrays can contain values of multiple types
var arr = [’a’, ’b’, 3, null];

indexOf(arr, ’b’); // returns 1
indexOf(arr, 4); // returns false

// Strings have a length property and can be indexed
// with integer indices to access their unicode code units
var str = ’foobar’;

indexOf(str, ’b’); // returns 3

Figure 2.1: Arrays and dynamic typing in JS

stead. This complicates type analysis because we cannot make the assumption that in-

valid inputs will stop the normal flow of execution. For example, if a type analysis

cannot prove that a given variable will never have the undefined value, then it must

assume that numerical operators taking this variable as input may produce a NaN output.

The NaN value can further propagate into other arithmetic operations, which could then

produce NaN outputs in turn, polluting analysis results in a sort of chain reaction.

Some JS operations do throw exceptions. Notably, attempting to call a value which

is not a function as if it were one will throw a TypeError exception, and so will

attempting to read a property from a null or undefined base. In the example from

Figure 2.1, attempting to evaluate indexOf(null, 3) will throw an exception when

attempting to read array.length. However, passing an object without a length

property to the indexOf function will cause it to silently fail and return false.

7

In JS, objects behave, to the programmer, as associative arrays mapping string keys

(property names) to values. Properties of any type can be added to or removed from

objects at any time. The language also features reflection capabilities, such as listing and

iterating through the properties of objects. Figure 2.2 shows a small example where an

object is used as a dictionary to map food and drink item names to price values.

var prices = {
pizza: 10,
coffee: 3,
beer: 5,
coke: 2

};

function getPrice(itemName)
{

if (itemName in prices)
return prices[itemName];

throw Error(’unknown item: ’ + itemName);
}

function addItem(itemName, price)
{

if (itemName in prices)
throw Error(’duplicate item: ’ + itemName);

if (typeof price != ’number’ || !(price > 0))
throw Error(’price must be a positive number’);

prices[itemName] = price;
}

Figure 2.2: Objects as dictionaries in JS

JS objects follow a prototype-based inheritance model inspired from the Self [4, 35,

36] programming language. In this model, there are no classes. Instead, objects may

derive from other objects in an acyclic prototype hierarchy. In effect, each object has

a (potentially null) pointer to a prototype object. When a property is looked up on a

given object and the property is not defined, then the same property lookup is recursively

attempted on the prototype object until either an object defining the requested property

is found along the prototype chain, or a null prototype pointer is encountered, in which

8

case the undefined value is produced.

Global variables in JS are stored on a first-class global object, which behaves like

all other JS objects. This means that global function calls involve an implicit object

property lookup, resulting in late binding. All JS functions in JS are implicitly variadic,

that is one can pass any number of arguments to any function without an exception being

thrown.

2.3 Early History of Dynamic Language Optimization

LISP, the first dynamic language, originally ran in an interpreter. The choice was

made to value safety (reducing the risk of programmer error) and programmer productiv-

ity above performance. This was a sensible choice when it came to writing experimental

programs, particularly for research purposes, but it hindered the adoption of languages

such as LISP, particularly given that in the early 1970s, computational resources were

scarce, limited and expensive.

It was obvious to John McCarthy that dynamic programming languages such as LISP

could be made faster by compiling them to machine code instead of having them run in

an interpreter. Because compilation took time, McCarthy had the idea that source-level

annotations could be used to tell the LISP interpreter that specific functions, deemed

by the programmer to be crucial for performance, were to be compiled instead of inter-

preted.

Even naive compilation of programs written in dynamic languages can easily pro-

vide large speedups over interpretation. However, this is not sufficient to get close to

the performance levels achievable with statically-typed programming languages. Naive

compilation eliminates the dispatch overhead of an interpreter, but it does nothing to

eliminate the overhead of late binding (dynamic lookups) and dynamic type checks.

When LISP was originally created, it was not known how to make dynamic lan-

guages fast. Some simple implementation strategies were devised to improve perfor-

mance, such as the use of type tags [18], which served to accelerate dynamic type tests.

However, many crucial advances in the realm of program analysis had not yet been made.

9

As such, most believed that in order for dynamic languages to match the performance of

statically typed languages, specialized hardware would be necessary.

In 1973, Richard Greenblatt and Thomas Knight of the MIT AI lab initiated the

development of the MIT LISP Machine [1]. This was a computer with specialized hard-

ware optimized to run LISP. This machine used a tagged architecture which implemented

support for tag bits in hardware. That is, each word of memory contained a few addi-

tional bits to identify the kind of data stored (e.g. a cons pairs, pointers, small integers).

The encoding of lists was compressed with CDR encoding, which allowed consecutive

pairs to occupy only one word of memory and improved garbage collection performance.

Various CPU instructions were also specialized for LISP programs.

In parallel with the development of the LISP machine, Xerox PARC began devel-

opment of the Xerox Alto computer [34] and the Smalltalk programming language in

1972 [27]. This programming language featured dynamic typing and object-oriented

polymorphism in the form of duck typing. The co-development of Smalltalk along with

the Alto computer allowed engineers to take advantage of microcode to implement ma-

chine instructions optimized for the language, as was done in the LISP machine. In

addition to this, new software tricks were invented to optimize specific language fea-

tures, most notably inline caches [14], which greatly improved the performance of object

property lookups.

The late 1970s saw important developments in program analysis. A seminal paper

by Cousot & Cousot introduced the concept of abstract interpretation [13], a powerful

technique for simulating the execution of a program at the symbolic level, which made

it possible to prove properties about programs. Such techniques made it possible to

analyze dynamically typed programs and eliminate some of the dynamic dispatch and

dynamic typing overhead.

In the mid-1980s, the Self programming language, designed by David Ungar and

Randall Smith at Xerox PARC, was the proving ground for several advances in the world

of dynamic language optimization. Multiple techniques, including type feedback, poly-

morphic inline caches and path splitting were devised. These made it possible for Self

to perform competitively on inexpensive commodity hardware.

10

The 1990s saw renewed interest in dynamic languages, with the advent of the web,

and languages such as Perl, Python, Ruby, JavaScript and PHP. These languages were

originally all interpreted, as fast personal computers made performance seem less rele-

vant. However, as interactive websites became increasingly complex applications, both

on the client and server side, there has been an increasing push to keep narrowing the

performance gap between dynamic and static languages.

2.4 State of the Art JavaScript VMs

Early JS implementations were interpreted. This seemed sufficient then, because the

language was largely used as glue code in otherwise static webpages. Over time, people

became increasingly reliant on JS to create webpages that were no longer simply static,

but rather dynamic, single-page applications. Facebook, Gmail and Google Docs are

good examples of this. These web applications do not display static HTML files, but

rather DOM tree nodes generated on the fly by JS code.

The appearance of dynamic web applications drove the need for faster JS implemen-

tations. Google took the lead by introducing the first version of its V8 JS engine in

2008, which featured a method-based JIT compiler. Mozilla followed shortly after with

TraceMonkey, a tracing JIT compiler [16] for JS, in 2009. Today, all commercial JS

implementations incorporate JIT compilers.

Since the beginning, web browser vendors competed for the JS performance crown.

This led to the rediscovery of several dynamic language optimization techniques pio-

neered by Smalltalk and Self [4], such as type feedback, polymorphic inline caching,

and the use of maps to optimize object property accesses. Classic optimization tricks

such as boxing and tagging numerical values [18] were also borrowed from the LISP

world. Even though the JS specification states that numerical values are all floating-

point, both V8 and SpiderMonkey distinguish between integer and floating-point values

internally, so that lower-latency integer machine instructions are used where possible.

Trace compilation initially gave TraceMonkey a performance advantage over other

JS engines because of its fast compilation times, its capability for deep inlining, and

11

because it was possible to implement inexpensive type-specialization optimizations [17]

in a tracing JIT. This was at a time when type analysis of JS programs was considered

impractical and too expensive for use in a JIT compiler.

The competition in the JS performance arena has not ceased. After dynamic web

applications, there has been a push for web browsers to become software platforms,

with web applications completely replacing desktop applications. This drove the need

for research into JS performance optimization, with the aim of getting the performance

of JS as close as possible to that of programming languages used in the desktop realm,

such as C, C++ and Java.

TraceMonkey was initially highly competitive, but it suffered from uneven perfor-

mance. The code it produced was very competitive on benchmarks containing small,

predictable loops, but was subpar elsewhere. It was retired in late 2011, in favor of

a method-based JIT compiler. Today, commercial JS engines have converged towards

multi-stage architectures, typically comprising an interpreter, a baseline (non-optimizing)

JIT compiler and one or two levels of optimizing compilers.

Much of the JS code on any given webpage is run only once during initialization,

or only run a few times. For such code, interpretation suffices, as it is typically faster

than the time needed to generate machine code. The key idea behind multi-stage VM

designs is that optimizations run within a JIT compiler must pay for themselves. That

is, an optimization is only worth applying to a piece of code if the resulting reduction in

execution time will be greater than the amount of time spent applying the optimization.

The interpreter and baseline JIT allow for fast startup times, and the optimizing JITs

apply expensive, heavyweight optimizations specifically to long-running code.

Until recently, type analysis of JS programs was considered highly problematic and

difficult to achieve. However, a hybrid type analysis for JS has been developed by

Mozilla and integrated into their SpiderMonkey JS engine in 2012 [19]. The analy-

sis copes with the uncertainty introduced by constructs such as eval using speculative

mechanisms and deoptimization [23]. Essentially, code is analyzed and optimized based

on information available at the time the analysis is run. The optimized code may then be

deoptimized later if speculative typing constraints turn out to be violated. This analysis

12

is relatively expensive, and so is only used at the highest optimization level.

Truffle/JS [38] is a JS engine created by Oracle which runs outside of a web browser,

and is based on the Truffle/Graal framework [39]. A notable optimization published by

the Truffle team is the encoding of JS object property types in object shapes (maps) [37]

to allow their optimizing JIT to extract type information on property reads. Google V8

implements a similar optimization, but details of their implementation are unpublished.

2.4.1 Tricks of the Trade

This subsection lists many of the optimizations and tricks used by modern JS VMs

to maximize performance.

Tag Bits. This is a kind of type tagging scheme [18]. The lowest bits of machine

words are used to identify the kind of value being stored. Typical categories are integers,

floating-point numbers, objects and strings.

NaN Tagging. Systems using tag bits typically box floating-point values via pointer

indirection, which is inefficient. NaN tagging is a type tagging scheme in which bit

patterns corresponding to floating-point NaN values are used to tag values which are not

floating-point, but floating-point values themselves are untagged.

Small Integers. The ES5 specification states that all numbers must behave like

IEEE double precision floating-point values. However, all modern JS VMs attempt to

use machine integer operations when possible, because these have a lower latency than

floating-point operations, but also to maximize ILP. As such, small signed integers, usu-

ally 31 or 32 bits in size, are used along with dynamic overflow checks to implement

common arithmetic operations.

Lazy Method Compilation. Methods are only compiled to bytecode or IR when

they are first executed. This avoids spending compilation time on code which never

executes.

Lazy Parsing. When parsing a source file, the parser quickly verifies that the syntax

of the entire file is valid, but it does not generate AST nodes for the inside of function

bodies. The function bodies are only fully parsed when they are first executed.

13

Zone Allocation. Instead of allocating and deallocating AST and IR nodes indi-

vidually, they are allocated by incrementing a pointer inside of a pre-allocated chunk

of memory specific to the function being parsed or compiled (called a zone). Later, all

memory allocated in the parsing and compilation of a function is freed at once, by dis-

carding the zone. This decreases both the cost of allocation and deallocation of compiler

data structures.

Staged Architectures. The VM has multiple stages of compilation and optimiza-

tion. Usually an interpreter, a baseline JIT compiler, and an optimizing JIT compiler.

Code that is run just once is interpreted, and only the longest running functions are

compiled with the optimizing JIT compiler. Costly, advanced optimizations are applied

selectively to code that is worth the compilation time expenditure. This idea dates back

to the Self-93 implementation, which had both a baseline and an optimizing JIT com-

piler [20, 21].

Parallel Background Compilation. Functions deemed hot and worth optimizing

are compiled using the optimizing JIT in one or more background threads. This allows

execution to continue elsewhere while expensive optimizations are performed, thereby

saving time and helping to avoid blocking the execution of the program.

Type Feedback. This idea dates back to Self [20]. It consists in using profiling

methods or hooks into the runtime library to determine which types occur at run time and

optimize code in accordance. V8 and SpiderMonkey use inline caches in their baseline

JIT compilers to discover which types operators are applied to. Optimizing JITs can then

inline code appropriate to the type combinations seen.

Inline Caching. The idea of inline caches dates back to implementation of the

Smalltalk system [14]. The concept was later developed into that of Polymorphic Inline

Caches (PICs) as part of the Self project [22]. A sequence of inline machine code in-

structions is made to test for specific types or object shapes and patch itself to execute

the appropriate action given the input types seen. Inline caches are a way to optimize

operations that could apply to many different types by specializing them on the fly to

remove dynamic overhead.

14

Local Type Analysis. Intraprocedural type analysis is used to eliminate dynamic

type checks inside of a method. This is only done in optimizing JITs, after selected

callees are inlined so as to expose more type checks.

Speculative Optimization. V8 performs a number of optimizations speculatively.

For instance, it speculates that integer overflows will not occur, and uses this to improve

local type analysis results. When the speculation turns out to be incorrect, the function in

which this occurs is deoptimized, that is, the speculatively optimized code is discarded.

Object Shapes. Object shapes (sometimes called “hidden classes”) derive from

the concept of maps, which originated in Self [4]. They are structures which encode the

memory layout of one or more objects. Each object has an associated shape which tells

us which properties are in the object and the memory offset at which each property is

stored. Shapes can also be used to associate metadata with each property.

Loop Unrolling. Optimizing JITs in modern JS VMs perform loop unrolling to

maximize performance.

Auto-Vectorization. Some operations which can make use of vectorization are

automatically detected through analysis, and optimized using SIMD vector instructions.

Allocation Sinking. Allocation sinking [28] is an optimization which tries to delay

the allocation of an object for as long as possible, in the hopes that this allocation will

be found unnecessary. This optimization tends to pay off when inlining deeply. It can be

used to eliminate the allocation of closures.

Ropes. JS strings are immutable, and so string concatenation operations implicitly

involve copying both of the strings being concatenated into a new string object. This is

problematic because many JS developers will generate strings by repeatedly appending

new content to a string in a loop, and the execution time for this is quadratic in the

size of the output. The solution to this issue, in languages such as Java, has been to

force programmers to use a special mutable string representation (the StringBuffer

class). Ropes are a string representation (hidden from the programmer’s view) which is

used to concatenate strings lazily. Instead of immediately concatenating two strings, a

rope object will be allocated to indicate that a concatenation should be performed. The

rope is only materialized into a real string object when some operation tries to access the

15

underlying data. With this system, data can be repeatedly appended to a string in linear

time.

Dependent Strings. Dependent strings are another string representation which is

meant to optimize the performance of manipulations on immutable strings. In particu-

lar, they are meant to optimize string slicing operations. When requesting a substring,

instead of copying the characters in the specified range, a dependent string object is al-

located, which stores a reference to the original string along with the index and length

of the range. This makes it possible to defer the copy operation, which can improve per-

formance if the substring is later appended to some other string, or if the result is simply

never used.

2.5 Summary

Dynamic languages are not a new invention, they date back all the way to the late

1950s, with the invention of LISP. However, in the early days, it was not known how to

make them run fast on general-purpose computer hardware. For a long time, dynamic

languages were at a significant disadvantage compared to statically typed languages due

to the run-time overhead incurred by late binding and dynamic typing. The advent of

Python, JavaScript and other dynamic languages which powered the internet revolution

sprouted new interest in making dynamic languages perform competitively.

The following chapters will focus on our own research and exploration of a JIT

compiler architecture designed with dynamic optimization in mind, and in particular,

our efforts to find ways to effectively eliminate dynamic type checks without incurring a

heavy compilation time cost.

16

CHAPTER 3

A SELF-HOSTED JAVASCRIPT VM

The article presented in this chapter details the implementation of Tachyon, a self-

hosted VM for JavaScript, itself written in JavaScript. This implementation was built

from scratch, without using code generation frameworks such as LLVM [29, 30]. The

register allocation, code generation and even the assembler were written in JavaScript.

Tachyon was built as a platform to explore the implementation of new program anal-

yses and optimizations for dynamic languages, JavaScript in particular. Self-hosting,

writing Tachyon itself in JavaScript, was seen as a way to simplify the implementation

of the compiler, and as a way to test the capabilities of the system.

The article presented in this chapter was submitted and accepted at the Dynamic Lan-

guages Symposium (DLS) 2011, and then published in SIGPLAN Notices [10]. Tachyon

took two graduate students approximately two years to build and weighs in at approxi-

mately 75000 lines of code. Its source code is open source and available on GitHub 1.

3.1 Design of Tachyon

Tachyon features a custom SSA-based IR inspired from that of LLVM [30]. As with

LLVM, the Tachyon IR is structured into single-entry single-exit basic blocks terminated

with branching instructions. This IR has built-in support for dynamic typing. That is,

each SSA value has an associated type tag, and there are low-level type test primitives

to determine what the type tag of a given value is at run time. There are also low-level

primitives which represent low-level machine instructions for integer and floating-point

arithmetic, as well as memory accesses (loads and stores).

One of the most important distinguishing features of Tachyon is that each JS operator

was implemented in terms of calls to runtime library functions, themselves written in an

extended dialect of JS. Implementing these runtime functions requires access to low-

1. https://github.com/Tachyon-Team/Tachyon

level type test and machine instruction primitives. In Tachyon, this is done with what

we term “inline IR”, which exposes these primitives as if they were callable functions in

our extended JS dialect, similarly to the way C compilers allow inline assembly.

The way Tachyon implements JS operators as runtime library functions is in opposi-

tion to the design of mainstream JS compilers. These typically implement higher level

IRs, where each JS operator is a polymorphic IR instruction able to operate on multiple

operand types. For instance, in V8 and SpiderMonkey, the JS addition operator is rep-

resented by an add IR instruction which can operate on integers, floating-point values,

strings, objects, etc. The machine code generated for each instance of this instruction is

specialized based on available type information.

In Tachyon, we instead represent the JS addition operator as a function call which

can be inlined, and then type-specialized like any other function. This simplifies the

implementation of the JIT compiler, because the compiler does not need special code

to know how to effectively specialize machine code for each primitive operator. It also

eliminates a number of corner cases which are problematic to deal with.

For instance, consider that the JS addition operator can operate on values of any type,

including objects. If we were to “add” a string to an object, the toString method of

the object would be called. This would then mean that any addition operator must inter-

nally be able to encode the logic of a JS function call. This function call could in turn

throw an exception, and such corner cases must be handled correctly. As such, writing

a function which directly generates machine code for JS operators can be very compli-

cated. This is our motivation in building an IR which encodes lower level instructions

instead. The result is that instructions in Tachyon’s IR are more “atomic” and predictable

in nature, and the compiler is able to analyze and optimize the behavior of JS primitives

as it would any other JS function.

3.2 From Tachyon to Higgs

Tachyon is able to run several benchmarks from the SunSpider suite and successfully

compiles itself to x86 machine code. We chose, however, not to pursue its development

18

any further, because of issues with performance, and the amount of development effort

required to keep developing Tachyon to the point where it would be suitable for imple-

menting a more sophisticated JIT compiler.

One major issue with the design of Tachyon, is that it was running on top of the

V8 VM. As such, in order for programs compiled by Tachyon to communicate with

Tachyon itself, these programs would need to call back into Tachyon functions. This

required exposing callbacks to JS functions running on V8 (written in C++) to machine

code we had generated ourself. Doing so would be technically challenging, but also

guaranteed to perform fairly poorly.

The Tachyon VM is able to compile itself to x86 machine code in RAM. It is, how-

ever, mostly designed in the same way as a static, ahead of time compiler. That is, it

compiles a series of source files all at once, and the way it compiles this code is not

affected by the program’s state. Tachyon does not, for instance, implement profiling or

lazy compilation of methods, as this would require compiled programs to call back into

the JIT.

These limitations are what motivated us to begin work on Higgs, a successor to

Tachyon written in D. The D programming language was chosen because it is a sys-

tems programming language, with support for things such as pointer manipulation and

specifying the calling convention of functions, which also offers the niceties of garbage

collection and some basic type inference.

Higgs is a direct descendant of Tachyon. It retained Tachyon’s self-hosted imple-

mentation of the JS runtime and standard library, its large bank of unit tests, as well

as several crucial aspects of its design, such as the SSA-based IR. Most importantly,

BBV relies on low-level type test instructions being exposed in the IR, as was done in

Tachyon.

19

Bootstrapping a Self-Hosted Research Virtual Machine for
JavaScript

An Experience Report

Maxime
Chevalier-Boisvert
Université de Montréal

Erick Lavoie
Université de Montréal

Marc Feeley
Université de Montréal

Bruno Dufour
Université de Montréal

ABSTRACT
JavaScript is one of the most widely used dynamic lan-
guages. The performance of existing JavaScript VMs, how-
ever, is lower than that of VMs for static languages. There
is a need for a research VM to easily explore new imple-
mentation approaches. This paper presents the Tachyon
JavaScript VM which was designed to be flexible and to
allow experimenting with new approaches for the execution
of JavaScript. The Tachyon VM is itself implemented in
JavaScript and currently supports a subset of the full lan-
guage that is sufficient to bootstrap itself. The paper dis-
cusses the architecture of the system and in particular the
bootstrapping of a self-hosted VM. Preliminary performance
results indicate that our VM, with few optimizations, can
already execute code faster than a commercial JavaScript
interpreter on some benchmarks.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers, optimization, code generation, run-time environments

General Terms
Algorithms, Performance, Design, Languages

Keywords
JavaScript, virtual machine, compiler, self-hosted, optimiza-
tion, implementation, framework

1. INTRODUCTION
JavaScript (JS) [8] was designed by Netscape in 1995 for

client-side scripting of web pages. Since then, all main-
stream web browsers have integrated a JS Virtual Machine
(VM) which can access the Document Object Model, placing
JS in a unique position for implementing web applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DLS’11, October 24, 2011, Portland, Oregon, USA.
Copyright 2011 ACM 978-1-4503-0939-4/11/10 ...$10.00.

Due to this, JS is currently one of the most widely used
dynamic programming languages. Each of the main browser
vendors has built their own VM, some being open-source
(Apple WebKit’s SquirrelFish1, Google Chrome’s V82,
Mozilla Firefox’s SpiderMonkey [6]) and some closed-source
(Microsoft Internet Explorer 9’s Chakra3), all of which use
Just-In-Time (JIT) compilation.

With the increased use of JS in web applications, the per-
formance of a browser’s JS VM has gained in importance
in the past few years, even appearing prominently in the
browser’s marketing literature. However, the performance
of the best JS VMs is still lower than the performance of
VMs for static languages. Although there is clearly a need
to design more efficient VMs, there has been relatively little
academic research on the implementation of JS. We believe
this is mainly due to the lack of easily modifiable JS tools,
and in particular a research VM, which would allow easy ex-
perimentation with a wide variety of new approaches. The
mainstream VMs, even if they are open-source, are not ap-
propriate for this purpose because they are large systems
in which it is tedious to change even conceptually simple
things (such as the function calling convention, the object
representation, the memory manager, etc.) without break-
ing obscure parts of the system. This has motivated us to
begin the design of a family of JS VMs and tools suitable
for research and experimentation.

This paper is an experience report on the design of
Tachyon, our first JS VM. Tachyon is a work in progress,
and this paper discusses the current state of the system.
Specifically, Tachyon has now reached the point where it
bootstraps itself. The discussion of the bootstrap process is
thus a central aspect of this paper.

1.1 Self-Hosting
The most remarkable feature of Tachyon is that it is writ-

ten almost entirely in JS. We expect this self-hosting to yield
some important benefits compared to a VM written in an-
other language. It is typical to write JIT-based VMs in a
low-level host language (e.g. C/C++) in order to have fast
JIT compilation. But this is at odds with the productivity
advantage of a high-level language, such as JS, for writing
the complex algorithms that are found in compilers. This is

1http://trac.webkit.org/wiki/SquirrelFish
2http://code.google.com/p/v8/
3http://en.wikipedia.org/wiki/Chakra (JScript engine)

an important issue for a research compiler where rapid pro-
totyping of new compilation approaches is desirable. Since
we expect Tachyon’s code generation to eventually be com-
petitive with compilers for static languages, we also believe
the self-hosting will not cause the JIT compiler to be slow.
Self-hosting also has the advantage of a single runtime sys-
tem (memory manager, I/O, etc), which eliminates code du-
plication as well as conflictual interactions of independent
client and host runtime systems.

1.2 JavaScript
Tachyon aims to implement JS as specified in the ECMA-

Script 5 (ES5) [8] specification. Although the infix syntax
of JS superficially resembles that of Java, the JS semantics
have much more in common with Python and Smalltalk. It
is a dynamic language, imperative but with a strong func-
tional component, and a prototype-based object system sim-
ilar to that of SELF [3].
A JS object contains a set of properties (a.k.a. fields in

other OO languages), and a link to a parent object, known
as the object’s prototype. Properties are accessed with the
notation obj.prop, or equivalently obj["prop"]. This allows
objects to be treated as dictionaries whose keys are strings,
or as one dimensional arrays (a numeric index is automati-
cally converted to a string). When fetching a property that
is not contained in the object, the property is searched in
the object’s prototype recursively. When storing a property
that is not found in the object, the property is added to
the object, even if it exists in the object’s prototype chain.
Properties can also be removed from an object using the
delete operator. JS treats global variables, including the
top-level functions, as properties of the global object, which
is a normal JS object.
Anonymous functions and nested functions are supported

by JS. Function objects are closures which capture the vari-
ables of the enclosing functions. Common higher-order func-
tions are predefined. For example, the map, forEach and
filter functions allow processing the elements of an array of
data using closures, similarly to other functional languages.
All functions accept any number of actual parameters. The
actual parameters are passed in an array, which is accessible
as the arguments local variable. The formal parameters in
the function declaration are nothing more than aliases to the
corresponding elements at the beginning of the array. For-
mal parameters with no corresponding element in the array
are bound to a specific undefined value.
JS also has reflective capabilities (enumerating the prop-

erties of an object, testing the existence of a property, etc)
and dynamic code execution (eval of a string of JS code).
The next version of the standard is expected to add proper

tail calls, rest parameters, block-scoped variables, modules,
and many other features. Even though we are currently
targeting ES5, we have been careful to keep Tachyon’s design
amenable to implementing the expected additions without
extensive refactoring.

1.3 Contributions
This paper presents Tachyon, a meta-circular JS VM. It

aims to serve as a case study for the design of a meta-circular
VM for dynamic languages. The main contributions of this
paper are:

• A presentation of the design of our compilation pipeline
(Section 3).

• The design of low-level extensions to JS for manipu-
lation of memory, compatible with the existing syntax
(Section 3.5).

• An execution model for the VM (Section 4.1).

• A description of the bootstrap process required to ini-
tialize the VM given the execution model (Section 5).

Note that for the remainder of the paper, we use the term
compiler to designate subsystem responsible for translating
JS code to native code, and the term VM to refer to the
combination of the runtime system and the compiler.

2. RELATED WORK
The literature on the design of meta-circular VMs for dy-

namic languages is rather sparse. To the best of our knowl-
edge, no comprehensive synthesis of issues and opportunities
has been done. There are, however, documented examples
for some languages.

Squeak is a recent implementation of Smalltalk, written in
Smalltalk. The Squeak VM is a bytecode interpreter written
in a restricted, non-object-oriented subset of Smalltalk [7]
that can be easily compiled to C code. This approach pre-
vents usage of more expressive features of the language for
the implementation of the VM. In contrast, Tachyon can use
the entire JS subset it supports in its own implementation.

JikesRVM was the first meta-circular VM to show that
high-performance was compatible with meta-circularity.
Tachyon uses a similar mechanism to the JikesRVM magic
class to expose primitive operations (Section 3.5).

Klein, a meta-circular implementation for Self [18], showed
that mirror-based reflection [2] could foster much code reuse.
Tachyon provides the reflection mechanisms specified in ES5
but those do not comprise mirror-equivalent mechanisms,
preventing usage of the Klein implementation techniques for
serializing objects in a binary image and remote debugging.
Tachyon creates the objects needed at run-time during the
initialization phase instead of relying on mirrors to access
already existing objects (Section 4.2). Tachyon uses an x86
assembler that we implemented in JS but unlike Klein’s as-
sembler, it is not self-checking.

PyPy [16] uses a rather different approach from other
meta-circular VM projects. It does not directly compile
Python code into executable code. Rather, their approach
involves describing the semantics of a bytecode interpreter
for a programming language (e.g. Python), and generating
a virtual machine (e.g. generating C code) that supports
the described language. It is able to improve on the perfor-
mance of the raw bytecode interpreter by applying . The
system now supports most of Python and significantly im-
proves upon the performance of the stock CPython distri-
bution, partly due to a tracing JIT compiler [1]. Tachyon
is hand-coded, and does not use automatic generation tech-
niques.

In contrast to the aforementioned systems, Tachyon does
not use a bytecode representation for compiled code. It com-
piles JS directly to native code. A low-level Intermediate
Representation (LIR) based on a Static Single Assignment
(SSA) form is used as a platform-neutral representation for
compiled code (Section 3.3) instead of bytecode.

Other researchers have studied the compilation of JS.
Loitsch has proposed an approach to leverage the similar-
ity between JS and Scheme by using it as a target lan-

Parsing AST -> IR
Instruction

Selection

Lowering Register Allocation

Assembly

Source Code AST SSA CFG ASM

BackendFrontend

Free Var. Analysis

function foo()

{

 ...

}

 0xDE

 0xAD

 0xC0

 0xDE

 ...

Figure 1: Overview of the compiler phases and rep-
resentations.

guage for a JS compiler [11]. Gal et. al. have described
TraceMonkey [6], a trace-based JS compiler that achieves
significant speedup by exploiting type stability in (possibly
nested) hot loops to perform type specialization and other
optimizations. Experiments on a popular benchmark suite
reveal that the technique can achieve speedups up to 25x.
The TraceMonkey implementation was later extended by

Sol et. al. [17] to further remove provably unnecessary over-
flow tests at run-time using a flow-sensitive range analysis.
The authors show that their technique is able to remove
more than half of the overflow checks in a sample of real JS
code from top-ranked web sites. Logozzo and Venter [10]
have also proposed an analysis that determines ranges as
well as types (e.g. 64-bit floating-point or 32-bit integer) of
numerical variables. The authors report up to 7.7x speedup
for some numerical benchmarks. Such techniques could be
implemented as part of Tachyon.
Some empirical studies can also shed some light on the

behavior of real-world JS applications, for example by com-
paring properties of standard benchmarks with real applica-
tions [15, 13], or by studying the use of particular language
features such as eval [14]. These studies will help direct
future efforts and implementation choices in our project.

3. COMPILER
The compiler operates on a succession of intermediate rep-

resentations getting progressively closer to native assembly
code. Four representations are used with the bulk of the
work being done on the third one:

• Source code: string representation of the JS code

• Abstract Syntax Tree (AST): tree representation of
declarations, statements and expressions

• Intermediate Representation (IR): Control Flow Graph
(CFG) in SSA form. Used to represent both the High-
Level IR (HIR) and Low-level IR (LIR)

• Assembly code (ASM): array of bytes and associated
meta-information representing the encoded assembly
instructions

A number of phases either produce those representations
or transform them. The front-end comprises the platform
independent phases:

• Parsing and free variable analysis: the source code is
translated into an AST and free variables are tagged
(Section 3.2).

• AST->IR: the AST is transformed into the HIR (Sec-
tion 3.3).

• Lowering: the HIR is transformed into the LIR and
optimizations are performed (Section 3.4).

The back-end comprises the platform dependent phases:

• Register allocation: operands and destination tempo-
raries are associated to physical registers or memory
locations in the LIR instructions (Section 3.7).

• Instruction selection: the LIR after register allocation
is transformed directly to a partial encoding of ASM
(Section 3.10).

• Assembly: the final encoding for ASM is generated
(Section 3.11).

Both representations and phases are illustrated in Fig-
ure 1.

3.1 Supported JS Subset
Tachyon currently supports enough of ES5 to bootstrap

itself. The VM supports strings, arrays, closures, construc-
tors, objects, prototypes and variable argument count. The
Boolean, Error, Function, Math, Number, Object, String
objects and a subset of their methods from the standard
library are also supported. The internal representation for
numbers uses fixed precision integers. Bitwise, logical and
arithmetic operations are supported.

These functionalities were sufficient to implement the data
structures and algorithms needed in pure JS. For example,
we required associative tables, sets, infinite precision inte-
gers, graphs and linked lists. The VM does not yet support
regular expressions, floating-point numbers4, exceptions, ob-
ject property attributes (read-only, enumerable, etc.), get-
ters and setters.

While Tachyon does not currently support floating-point
numbers, this does not confer it an unfair performance ad-
vantage over other JavaScript VMs that do. Type and over-
flow tests are already inserted in the generated code so as to
handle floating-point operations once they are implemented.
Hence, the performance is the same as if these operations
were supported, but Tachyon cannot yet run code that would
invoke floating-point operations.

3.2 Parsing and AST
The parser is automatically generated from the WebKit

Yacc JS grammar. A script transforms the grammar into
S-expressions which are fed to a Scheme LALR parser gen-
erator, and the resulting parsing tables are pretty printed
as JS arrays. A hand written scanner and a LALR parser
driver complete the parser.

4At the time of publication, regular expressions and floating-
point numbers are implemented but not fully tested, and are
therefore excluded from the supported JS subset.

The AST is then traversed to compute some properties
(scope of variables, set of free variables, set of variables de-
clared in a function, use of eval and arguments variables
within a function, etc). The AST is also transformed to

• add debugging code when this is requested (for exam-
ple tracing function entry and return),

• rewrite some constructions into a canonical form, such
as transforming obj.prop into obj["prop"], and trans-
forming variable declarations into assignments,

• rewrite formal parameters accesses to indexing of the
arguments object, when the arguments variable is ac-
cessed in the function.

3.3 Intermediate Representation
After the AST transformations, the AST is translated into

the IR. This IR is in SSA form [5]. It comprises low-level
type annotations which were inspired by those of LLVM [9].
We have chosen an SSA-based IR because such an IR is
closer to machine code and we expect it will be efficient for
recompilations to be done directly on the IR without having
to restart the compilation at the AST level. The Tachyon IR
is loosely divided into HIR and LIR layers, which are both
refinements of a generic SSA-based IR. ASTs are initially
translated into the HIR, and the HIR code is later translated
into the LIR.
Each function compiled by Tachyon has an associated

CFG divided into basic blocks. At the beginning of each
basic block is a possibly empty list of phi nodes implement-
ing parallel conditional assignments. These phi nodes are
followed by a series of instructions, each of which produces
zero or one output value. Branch instructions are only al-
lowed at the end of basic blocks. These can either be return
instructions, direct jumps, if-test instructions with two pos-
sible targets, throw instructions, or call instructions. Call
instructions can have a regular continuation target and an
exception target, making exception control-flow explicit.
The HIR comprises high-level operations meant to repre-

sent dynamically-typed JS operators directly. It comprises
add and subtract primitives, for example, which represent
the JS + and - operators, and can thus operate on any JS
type. The HIR is easy to analyze in terms of JS semantics,
but remains abstract. It is eventually transformed into the
LIR, which translates fairly directly to machine code.
The LIR is meant to closely represent the kinds of oper-

ations that most modern computer processors implement.
It is more verbose but also more expressive. By controlling
how specific instances of HIR constructs are translated into
LIR based on type information, the code can be specialized
and optimized. The LIR exposes some low-level types such
as pointers, garbage-collected references and machine inte-
gers. It is close to the expressiveness level of C code, and
comprises instructions for native integer, floating-point and
pointer arithmetic.
We have chosen to express these low-level operations in

the IR so as to allow further optimizations on the LIR to
be implemented in a portable way in the front-end. De-
spite being closer to machine code, the LIR remains rela-
tively machine-agnostic. It is in SSA form and does not
expose highly machine-specific details such as machine reg-
isters, stack frame formats and calling conventions. These
are to be specified by a back-end tailored to the target ar-
chitecture.

3.4 Optimizations
The front-end currently implements several commonplace

optimizations which can operate on both the HIR and LIR.
These include function inlining, Sparse Conditional Con-
stant Propagation (SCCP) [19], Common Subexpression
Elimination (CSE) as well as dead code elimination, strength
reduction and peephole optimization patterns. The opti-
mization patterns simplify control flow graphs by eliminat-
ing known patterns of redundant phi nodes, branches and
instructions.

The optimizations we have implemented are fairly basic.
They help improve the quality of the code generated by
Tachyon, but do not yet attack the more critical perfor-
mance issues involved in optimizing JS code. In particu-
lar, they are unable to optimize for more likely code paths,
optimize based on type information, or reduce the cost of
property accesses. We aim to implement more advanced
analyses and optimizations in the future, such as optimistic
optimization techniques and inlining (see Section 7).

3.5 JS Extensions
The JS language lacks some of the low-level functionality

required to implement a JIT compiler. More specifically, it
does not allow accessing raw memory directly, nor does it
allow the execution of arbitrary code, or even file system
access. As such, Tachyon is not written in pure JS, but
instead in an extended dialect of the language.

One obvious way to extend JS was to implement a For-
eign Function Interface (FFI) to allow Tachyon to call C
functions. Once such an interface is in place, JS code can
be made to call C code to implement the functionality that
JS itself does not provide. One possible design choice would
have been to make no further extensions to JavaScript and
implement all the missing functionality required to write a
JIT compiler in C. However, this would imply the implemen-
tation of significant portions of the compiler in C directly,
which could be both difficult to maintain and problematic
for performance, as FFI function calls are costly, opaque and
non-inlinable.

Since Tachyon compiles JS code to a low-level IR that has
an expressive power similar to that of C, we have been able to
further extend JS with typed variables directly representing
pointers and machine integers. By default, all variables in
Tachyon have a boxed dynamic type, which can store any
JS value, but functions can be annotated to say that they
take typed variables as arguments (e.g.: 32 bit integer, raw
pointer). External C primitives that take typed variables as
input and return typed values can also be called.

The C primitives exposed to Tachyon only implement low-
level operations (e.g.: malloc/free, file and console I/O,
timing functions). To implement Tachyon primitives need-
ing direct access to memory or lower-level hardware capa-
bilities, we directly expose LIR instructions to JS code, in
Inline IR (IIR), a concept similar to inline assembly. Com-
pared to inline assembly, however, Inline IR code is more
machine-agnostic and more readable. It makes it possible,
for example, to call the LIR load and store instructions as if
they were JS functions when one needs to read or write to
memory.

The snippet of code below shows the readConsole C func-
tion being registered with Tachyon:

regFFI(new CFunction(
’readConsole’,
[new CStringAsBox()],
new CStringAsBox(),
params

));

The function readConsole takes a prompt string as argu-
ment and reads a user-input string from the console, which
is returned. The snippet of code shown creates a proxy func-
tion that will convert a boxed string argument (JS string)
into a char* string pointer for the C function, and perform
the reverse conversion on its return value. The readConsole
function is then used in Tachyon’s read-eval-print loop as if
it were an ordinary JS function.
For the inline IR, we have designed a syntax that can be

parsed by an unmodified JS parser. The example in Fig-
ure 2 shows a function used to convert C ASCII strings
into JS strings usable by Tachyon. This function uses the
iir.load instruction to read character values directly from
the C string, and casts them into 16-bit UTF-16 characters
using the iir.icast instruction. The iir.load instruction
is annotated to say that the value it is loading is a single
byte (i8 type). The output value of the instruction is thus
not a boxed value, but a typed LIR value.

function cStringToBox(strPtr)
{

"tachyon:static"; // Statically-linked func.
"tachyon:noglobal"; // No global object access
"tachyon:arg strPtr rptr"; // strPtr is a raw pointer

// If the string pointer is NULL, return the JS null
if (strPtr === NULL_PTR)

return null;

// Compute the string length
for (var strLen = pint(0); ; strLen++)
{

var ch = iir.load(IRType.i8, strPtr, strLen);
if (ch === i8(0))

break;
}

// Allocate a string object
var strObj = alloc_str(strLen);

// For each character
for (var i = pint(0); i < strLen; i++)
{

var cCh = iir.load(IRType.i8, strPtr, i);
var ch = iir.icast(IRType.u16, cCh);
set_str_data(strObj, i, ch);

}

// Compute the hash code for the new string
compStrHash(strObj);

// Attempt to find the string in the string table
return getTableStr(strObj);

}

Figure 2: Function using Inline IR (IIR).

3.6 Implementation of the Primitives
Tachyon implements the JS semantics by mapping the

primitive operations of the JS language to HIR instructions
which can be translated into one or more LIR instructions.
This translation is currently done in a very straightforward
way: each HIR instruction maps to a call to a primitive func-
tion, which may or may not be inlined as the HIR is trans-
lated into LIR. The primitive functions may or may not use

inline IR functionality to implement their semantics. The
add primitive, for example, makes use of an LIR instruction
implementing a machine addition with an overflow check so
that integer additions can be optimized.

The primitive functions getProp, putProp and hasProp

implement object property access. Other primitives imple-
ment basic operations on string and array objects. Because
it would be tedious to constantly have to perform pointer
arithmetic and invoke LIR instructions to access the mem-
ory layouts of these objects, we have chosen to take a help-
ful shortcut. Memory layouts are described in Tachyon us-
ing layout objects, which store mappings of field types and
names to memory offsets. These are similar to C structs.
We then use metaprogramming to auto-generate extended
JS code (inlinable setter and getter methods) to access each
field of a given layout. This greatly improves the readability
and maintainability of our runtime implementation.

It is possible to use extended JS anywhere inside the
Tachyon code, however, we have made a conscious effort
to try and limit its use to the implementation of low-level
primitives. Tachyon’s implementation of the JS standard li-
brary, as well as most of Tachyon’s implementation remains
mostly written in pure JS code. This gives us the added
benefit that the Tachyon LIR can be changed without an
enormous refactoring effort being required.

3.7 Register Allocation
The most important compromise to be made when design-

ing a register allocation algorithm is between compilation
speed and quality of the resulting code, namely maximizing
usage of registers for the most frequently executed instruc-
tions and minimizing the number of moves between registers
and memory. Although earlier work was biased toward the
latter, recent algorithms targeted at JIT compilers now give
more weight to the former.

We initially chose to implement the Linear Scan (LS) reg-
ister allocator [12], specialized for the SSA representation
[20] as it seemed well-suited to our choice of IR and was
reported to produce code competitive with a graph-coloring
algorithm. However, in improving the implementation, we
remarked that operating on live intervals instead of directly
on the CFG makes the task of modelling the target archi-
tecture constraints more difficult. This motivated the im-
plementation of a second, On The Fly (OTF) allocator, also
operating on the SSA representation. Both algorithms use
the Most Distantly Used heuristic for spilling.

Although a detailed analysis has yet to be performed, ini-
tial tests on simple benchmarks suggest that our OTF im-
plementation is simpler, faster and produces code of similar
or better quality than our LS algorithm. The current imple-
mentation of Tachyon can use either interchangeably.

3.8 Calling Convention and Register Usage
To our knowledge, no systematic exploration of the de-

sign space has been done concerning calling conventions and
register usage for compiled dynamic languages. From the
very beginning, we anticipated using Tachyon to identify
the most promising ideas. To accommodate such flexibility,
the number and the nature of registers available for register
allocation as well as for passing arguments to functions can
be varied by modifying a single configuration object. We
chose to reserve for a future time the factorization necessary
for other possibilities such as using callee-save registers and

using a register to pass the return address.
Exploration of the different possibilities is planned for the

near future. Currently, Tachyon uses a single configuration
corresponding to our educated guess of what would be faster.
Moreover, the same register usage and calling convention are
used on both x86 and x86-64. Those choices are motivated
by the desire to obtain a working compiler faster with the
intention of revisiting the choices made in the future if they
become a bottleneck for the execution speed.
The current calling convention uses four registers to pass

arguments to a function, respectively for passing the closure
pointer, the this object and the first two parameters of
the function. The stack is used to pass the return address
and the remaining parameters. A location on the context
object (see Section 4.1) is used for passing the argument
count. For performance reasons, direct support for C calls is
implemented both for x86 and x86-64. Stack alignment and
proper argument passing is inlined in the generated code.
The current register usage on x86 reserves five registers

for register allocation, and three registers respectively for
keeping a reference to the context object, the stack pointer
and a scratch register. The latter is used as a temporary
measure to lessen the constraints on register allocation but
we intend to eliminate it eventually.

3.9 Function arguments handling
The flexibility gained by having variadic functions by de-

fault incurs a run-time overhead when the caller does not
know the expected number of parameters for a variadic func-
tion. The current implementation uses an assembly lan-
guage handler prepended at the entry point of each function.
This handler manipulates the call stack to match the num-
ber of expected parameters. Extra arguments are removed
and missing arguments are initialized to the undefined value.
As a special case, when the compiler generates calls to

primitive functions, since the number of arguments and the
non-usage of the arguments object are known at compile-
time, a fast entry point is used which avoids passing and
checking the argument count at run-time.
The arguments object also incurs a run-time cost because

the object in question needs to be constructed. For functions
using it, all arguments passed on the stack are copied in
an array, before the check for the number of arguments is
performed and the stack frame is manipulated. A handler for
creating the arguments object is prepended to the variadic
function handler for functions making use of the feature.
Note that the arguments object contains function argu-

ments, but also a reference to the callee function object.
This information is available to functions because the func-
tion object is a hidden argument in our default calling con-
vention. Some JavaScript implementations also include a
reference to the caller function in the arguments object.
Tachyon does not provide this because it is not part of the
ES5 standard. We do not believe it would be difficult or
costly to implement, however.

3.10 Instruction Selection
Instruction selection is done after register allocation. It

tries to exploit faster and/or smaller instructions when pos-
sible. For example, when performing an addition with an im-
mediate value of 1, the inc instruction will be used instead
of the regular add instruction. Most of the work concerns
ensuring the proper location of operands with regard to x86

operand conventions, such as not having two operands in
memory and having one of the operands being the destina-
tion of the instruction.

Instruction selection notation uses regular JS mixed with a
selected subset designed to mimic the GNU assembler syn-
tax. Inside regular code, an assembly language context is
initiated by referring to the assembler object, asm by con-
vention. Then, using $ as an immediate value constructor,
mem as a memory address constructor, variable names to re-
fer to register objects, as well as cascading function calls [4],
namely methods returning the this object, allows to write
assembly code in the style shown below:

asm.
mov(eax, ebx). // 000000 89 c3 movl %eax,%ebx
add($(1), ebx). // 000002 83 c3 01 addl $1,%ebx
add(mem(0,esp), ebx). // 000005 67 03 1c 24 addl (%esp),%ebx
ret(); // 000009 c3 ret

This has proved helpful in working at different levels of
abstraction, all within the same language. For example,
JS can be used as a metaprogramming language for writing
assembly code by defining cascading functions implementing
common idioms. The following example illustrates copying
values from the stack to an array, using a for loop generator
pattern:

var i = eax;

asm.
forLoop(i, ">=", $(0), function () // for (;i >= 0; --i)
{

this.
mov(mem(0, sp, i), temp). // temp = sp[i]
mov(temp, mem(0, arr, i)); // arr[i] = temp

}).
ret();

Interleaving assembly instructions with generator patterns
makes assembly writing more convenient and arguably easier
to read than with a regular assembler.

3.11 Assembly
Once a partial encoding for instructions has been gener-

ated by the instruction selection phase, a fixpoint on the
assembly code generated is performed to find the minimal
length encoding for the given assembly language instruc-
tions. This is necessary because the encoding length for
some instructions varies as a function of the value of some
operands. For example, encoding a relative jump with an
8-bit displacement uses only two bytes instead of five for a
32-bit displacement.

3.12 Compilation Example
function add1(n)
{

return n + 1;
}

Above is the source code for a simple JS function which
computes n+1. Due to the generic nature of the + operator,
this either adds one if n is a number, or converts n to a
string, if it isn’t already one, and concatenates the string
"1" to it.

Figure 3 illustrates the AST produced by our parser for
the add1 function. This AST includes the function declara-
tion, the block of statements inside the function body, the
variables and their scope, as well as the operator expression
adding n to 1, wrapped inside a return statement. The HIR
produced for this function is shown below:

Program ("ex.js"@1.1-1.36:)
|-var= add1 [global] ("ex.js"@1.1-1.36:)
|-func= add1 [global] ("ex.js"@1.1-1.36:)
|-block=
| BlockStatement ("ex.js"@1.1-1.36:)
| |-statements=
| | FunctionDeclaration ("ex.js"@1.1-1.35:)
| | |-id= add1 [global] ("ex.js"@1.1-1.36:)
| | |-funct=
| | | FunctionExpr ("ex.js"@1.1-1.35:)
| | | |-param= n ("ex.js"@1.15-1.16:)
| | | |-var= n [local] ("ex.js"@1.1-1.35:)
| | | |-body=
| | | | ReturnStatement ("ex.js"@1.20-1.33:)
| | | | |-expr=
| | | | | OpExpr ("ex.js"@1.27-1.32:)
| | | | | |-op= "x + y"
| | | | | |-exprs=
| | | | | | Ref ("ex.js"@1.27-1.28:)
| | | | | | |-id= n [local] ("ex.js"@1.1-1.35:)
| | | | | | Literal ("ex.js"@1.31-1.32:)
| | | | | | |-value= 1

Figure 3: AST for the add1 function.

entry:
box n = arg 2;
box $t_4 = call <fn "add">, undef, undef, n, box:1;
ret $t_4;

As can be seen, this representation is rather concise and
abstract. The value of the argument n is assigned to an
SSA temporary. The primitive add function is then called
to implement the behavior of the + operator applied to n and
1. The result of this call is then returned. The two undef

arguments to the call represent the closure and this object
references, which are undefined in the case of primitive calls.

entry:
box n = arg 2;
pint $t_4 = and_box_pint n, pint:3;
if $t_4 === pint:0 then cmp_true else if_false;

cmp_true:
box $t_14 = add_ovf n, box:1 normal call_res overflow ovf;

call_res:
box phires = phi [$t_11 ovf], [$t_19 if_false], [$t_14 cmp_true];
ret phires;

ovf:
ref $t_9 = get_ctx;
box global_2 = load_box $t_9, pint:36;
box $t_11 = call <fn "addOverflow">, undef, global_2, n, box:1;
jump call_res;

if_false:
ref $t_17 = get_ctx;
box global_3 = load_box $t_17, pint:36;
box $t_19 = call <fn "addGeneral">, undef, global_3, n, box:1;
jump call_res;

Figure 4: LIR for the add1 function.

The LIR for add1 is produced by inlining the call to the
primitive add function (see Figure 4). This results in many
basic blocks being added to add1. This code implements
the multiple semantics of the + operator. The tag bits of
the operand values are first tested to see if both operands
are integers. The test of the tag bits of the constant are
eliminated by constant propagation. If n is an integer, we
use the add_ovf instruction to perform an integer add with
an overflow check directly on the bits of the values.

If the result overflows, the add_ovf instruction will branch
to the ovf basic block, in which the addOverflow function
is called to handle this case. If n was not an integer to
begin with, the addGeneral function is called to implement
the generic addition semantics, which may result in a string
concatenation, for example. In all cases, the control-flow
eventually reaches the call_res block and the final result
of the addition is passed to the phires phi node, whose value
is then returned.

0000 <fn:add1>
/* stack adjustment prelude removed */
0051 entry:
0051 89 c7 movl %eax,%edi
0053 83 e7 03 andl $3,%edi
0056 85 ff testl %edi,%edi
0058 75 3b jne if_false
005a eb 00 jmp cmp_true
005c
005c cmp_true:
005c 89 c7 movl %eax,%edi
005e 83 c7 04 addl $4,%edi
0061 71 02 jno call_res
0063 eb 08 jmp ovf
0065
0065 call_res:
0065 83 c4 04 addl $4,%esp
0068 89 f8 movl %edi,%eax
006a c2 00 00 ret $0
006d
006d ovf:
006d 89 ce movl %ecx,%esi
006f 8b 76 24 movl 36(%esi),%esi
0072 89 fb movl %edi,%ebx
0074 89 1c 24 movl %ebx,(%esp)
0077 bf 00 00 00 00 movl <addOverflow_fast>,%edi
007c 89 f5 movl %esi,%ebp
007e be 04 00 00 00 movl $4,%esi
0083 ba 19 00 00 00 movl $25,%edx
0088 c7 41 04 04 00 00 00 movl $4,4(%ecx)
008f ff d7 call *%edi
0091 89 c7 movl %eax,%edi
0093 eb d0 jmp call_res
0095
0095 if_false:
0095 89 cf movl %ecx,%edi
0097 8b 7f 24 movl 36(%edi),%edi
009a 83 ec 04 subl $4,%esp
009d 89 3c 24 movl %edi,(%esp)
00a0 bf 00 00 00 00 movl <addGeneral_fast>,%edi
00a5 8b 2c 24 movl (%esp),%ebp
00a8 ba 19 00 00 00 movl $25,%edx
00ad be 04 00 00 00 movl $4,%esi
00b2 c7 41 04 04 00 00 00 movl $4,4(%ecx)
00b9 ff d7 call *%edi
00bb 83 c4 04 addl $4,%esp
00be 89 c7 movl %eax,%edi
00c0 eb a3 jmp call_res

Figure 5: x86 assembler for the add1 function.

Finally, the x86 assembler code (32-bit) produced for the
add1 function is shown in Figure 5. For brevity, this snippet
is missing the prelude that adjusts the stack frame if the
number of arguments is different than expected. The ma-
chine code is generated based on the LIR. The basic blocks
are ordered so as to try to linearize the most likely code
paths. Basic LIR instructions typically require very few ma-
chine instructions. For example, add_ovf is implemented as
a machine add followed by a jump that tests the overflow
condition flag. The x86 code for the add1 function fits within
194 bytes.

4. RUNTIME

4.1 VM and Program Execution Model
The evolution of dynamic languages shows a trend toward

late-binding more and more elements of the language. Ac-
cordingly, the implementation of those languages also shows
an increasing complexity in their run-time behavior. The
availability of the compiler at run-time allows it to manipu-
late runtime structures required by the program being com-
piled. This makes for an execution model for the VM that
blends compile-time and run-time behaviors. This section
explains the particular choices made for the execution model
of Tachyon. We introduce the following definitions to sim-
plify reasoning about the execution model in the context of
meta-circularity: we refer to the environment in which the
compiler executes as the host environment, and the envi-
ronment in which the compiled code executes as the client
environment.
During execution, a Tachyon program executing in the

client environment needs access to a number of data struc-
tures. Those data structures are accessed through a context
structure. It holds references to the JS global object, a string
table and heap allocation pointers. The context structure is
an implementation artefact, not accessible as a JS object.
During compilation, the compiler accesses the client envi-

ronment to initialize resources needed by the compiled code.
We chose to create strings in the client environment to avoid
maintaining a compile-time string table that would duplicate
the runtime string table used by the executing program and
avoid the run-time cost of internalizing strings. To be able to
inline primitive implementations in the generated code, the
compiler needs access to the IR of those primitives. These
are maintained in the host environment. Also, the compiler
needs access to the OS API functionalities not exposed in JS
such as allocating executable memory. This is done through
proxies.
The result of a successful compilation is an executable

machine code block (MCB), which will be referred after ini-
tialization by a JS function object in the client environment.
Tachyon also maintains the IR of the function in the host en-
vironment to allow recompilation, but this feature has not
been used yet. The execution model is illustrated in Fig-
ure 6.
Tachyon creates runtime strings during compilation, this

technique could also be applied more generally for the cre-
ation of runtime function objects maintaining compilation
information and manipulation of the global object by the
compiler.
When executing on an existing JS implementation, the

host environment is necessarily different from the client en-
vironment. Once bootstrapped, it would be beneficial to
have the host and client environment be the same as this
allows sharing of resources between the compiler and com-
piled code, such as the string table. To keep the implemen-
tation simple, however, the compiler currently still executes
in a different environment. Sections 4.2 and 5 respectively
explain the initialization of the client environment and the
bootstrap process.

4.2 Initialization Process
We have designed Tachyon to self-initialize. The host en-

vironment compiles code to be run in the client environment.
The client code is then able to initialize its own objects in

Host environment Client environment

Compiler

Proxies

OS API

Context

Structure
Global Object

String TableFunction

MCB

Reference

Legend

Figure 6: Execution model.

its own heap. The host environment never has direct access
to the objects in the client heap. This method was chosen
because it avoids the need for an interface layer between the
host and client object representations. Only the client code
needs to know how to manipulate objects inside its heap.

Initialization of the client environment requires a heap in
which allocation of objects can occur, a context structure
to maintain bookkeeping information and runtime services
such as a string table.

The very first operation consists in requesting a contigu-
ous memory space for allocation (heap) from the operating
system. This is done through a C malloc call.

Next, the compiler needs access to the IR of primitives. To
obtain them, the primitives are recompiled from source code
and their IR representation are stored on the configuration
object in the host environment. This is in turn sufficient
to compile bridges between the host environment and the
client environment. Bridges reuse the FFI implementation
and use C as a common interface language between the host
environment and the client environment.

Once the heap, the IR of primitives and bridges are avail-
able, the client environment is initialized by allocating the
context structure through a FFI call. Since allocation of the
context structure requires a context structure, the recursion
is avoided by partially initializing the context to allow it to
be allocated through the regular allocation mechanism.

Now that object allocation is possible in the client envi-
ronment, the string table is initialized. Note that all the
primitives needed for the previous phases cannot rely on
strings for correct behavior since those are not available un-
til this point. However, they might still reference them as
long as the code is not executed. At this point, strings used
by primitives are allocated in the string table and references
are linked in the executable code.

The client global object is then allocated and initialized in
the client environment. This allows compilation and initial-
ization of the standard library. Once the standard library
is initialized and the system is ready to compile client code,
the initialization process is finished.

4.3 Bridges
Tachyon needs to be able to make calls to the client code

it compiles in order to initialize it and run it. This process is
non-trivial because when Tachyon runs under its host plat-
form, the code it needs to call into uses a calling convention
that is not supported by the host platform. Furthermore,
even if Tachyon was running independently of a host plat-

form, we may want to change the Tachyon calling convention
for a new bootstrap, which would result in a similar scenario.
Tachyon may use a different calling convention from the code
it is compiling.

Host environment Client environment

ProxyCaller

C to C

Legend (calling conventions)

Figure 7: Calling convention bridge.

To resolve this issue, we have designed a mechanism we
call a bridge. The Tachyon back-end provides support for
calling C functions. It is also able to generate functions that
are callable using the C convention. The current Tachyon
host platform (Google V8) supports calling into C functions
as well. This allows us to implement a system that can call
client functions from the host environment by using the C
calling convention. We do this by creating a proxy support-
ing incoming C calls on the client side, and another proxy
that exposes the client proxy using the host calling conven-
tion on the host side. The host function can then call into
its proxy using the host calling convention, which calls the
client proxy using the C calling convention, which finally
calls into the client function using the client calling conven-
tion. This is illustrated in Figure 7.
Bridges are not like the mirrors of Klein [18], which allow

reflective access to objects residing in a remote VM. Rather,
they are a lower-level mechanism that allows us to call func-
tions residing in another VM while properly handling the
discrepancies in calling conventions and argument type con-
versions. Tachyon uses them to initialize a new VM during
the bootstrap process. We may eventually use bridges as a
tool in implementing mirror-like facilities.

4.4 Object Representation
Heap-allocated structures in Tachyon are referenced

through boxed values whose least significant bits (tag bits)
identify the kind of object being referred to. Those struc-
tures all begin with a 32-bit header that encodes more pre-
cise information about the exact layout and size of the struc-
tures so that they can be traversed by a GC.
JS objects are currently represented in memory in a

straightforward way. The object structure stores a prop-
erty count, a prototype reference and an indirect reference
to another structure which is a hash map of property names
to property values (see Figure 8). This indirect reference is
present so that the property map can be reallocated when
the number of properties grows beyond the current capacity
of the property map. The prototype property refers to the
object’s prototype object. It may be null if the object has
no prototype. It is stored outside of the property map be-
cause every object must have this field and it must not be
directly visible as a property of the object.
In JS, it is possible to use arrays and functions as regular

JS objects. That is, named properties can be stored onto

LengthHeader

Header

(32 bits)

Property

count

Property

map
Prototype

Figure 8: JS object memory layout.

them. They also have a prototype field, just as with regular
objects. Because of this, we have chosen to implement ar-
rays and functions as extensions of regular JS objects. This
means that arrays and functions share a common part of
their memory layout with regular objects. Namely, the pro-
totype, property count and property map fields. They also
possess additional fields specific to their implementation.

CapacityHeader

Header

(32 bits)

Property

count
Length

Element

table

Property

map
Prototype

LengthHeader

Figure 9: Array memory layout.

In the case of arrays, they also store a length field (the
length of the array, or number of indexed values stored) and
a reference to an element table (see Figure 9). The element
table stores a capacity field so that additional space beyond
the length of the array can be reserved for future resizing.
This table will be reallocated if the array size increases be-
yond the capacity.

H

Mutable cells

H H H

LengthHeader

H

Cell count
Header
(32 bits)

Property
count

Code
Property

map
Prototype

Figure 10: Function memory layout.

Function objects in JS are a representation of closure in-
stances. In addition to the normal object fields, they also
store a pointer to the function’s machine code and a fixed
number of references to mutable cells (see Figure 10). Each
mutable cell is heap-allocated and contains a header and
a mutable boxed value field. These mutable cells serve to
store mutable variables captured by the closure. This rep-
resentation of closures is one favored by many Scheme im-
plementations. We plan to eventually optimize our closure
representation by allocating mutable cells only for the cap-
tured variables that are shared among multiple closures.

Strings in JS are not objects. They are immutable prim-
itives, and as such, cannot store properties like objects, ar-
rays and functions. Because of this, we have designed a
layout (see Figure 11) for them in which only the length

Length Characters
Header

(32 bits)

Figure 11: String memory layout.

and the raw UTF-16 character data are stored.

5. BOOTSTRAP
The boostrap process of Tachyon is performed in memory

to avoid the creation of a separate executable or image. This
is a temporary measure until support for an image writer is
added.
We define the hosted compiler to be the compiler exe-

cuting in the host environment, the bootstrapped compiler
to be the compiler produced by the hosted compiler and
executing in the client environment, and the boostrapped
client environment to be the environment initialized with
the bootstrapped compiler. An illustration of the hosted
and bootstrapped compilers is given in Figure 12.

x86

JS

V8

JS

JS x86
Tachyon

JS

JS x86
Tachyon

x86

JS x86
Tachyon

Hosted

Compiler

Bootstrapped

Compiler

Figure 12: Bootstrap stages.

The following steps are performed to achieve a bootstrap
in memory:

1. Initialization of the client environment with the hosted
compiler.

2. Compilation of the Tachyon source code and shell with
the hosted compiler.

3. Initialization of the bootstrapped client environment
with the bootstrapped compiler.

4. Execution of the compiler and shell.

Note that when a bootstrap is performed in memory, the
control never returns to the initial host environment, frames
from the host environment are kept on the stack and the
memory allocated by the host process is still active.
Initialization of the bootstrapped client environment could

be avoided if the client environment was reused instead,
since their run-time behavior is identical. They were kept
separate for simplicity of implementation for this version of
the compiler, although we plan on merging them in the near
future.

6. PERFORMANCE
In this section, we present some performance compar-

isons of Tachyon against other JS implementations. Perfor-
mance has not been an important concern up to this point
in Tachyon’s development. Therefore, these numbers are
meant as ballpark figures only. The benchmark numbers
shown were measured on a computer with quad Intel Xeon
X5650 CPUs, running the Linux 2.6 kernel. Tachyon5 was
compared against Google V8 revision 7878 and WebKit’s in-
terpreter revision 88541. All implementations were compiled
in 64-bit mode.

A large proportion of widely-used JS benchmarks avail-
able rely on features not yet supported by Tachyon, such
as regular expressions, the Date object and floating-point
numbers. We have chosen to use the benchmarks from the
SunSpider JS benchmark suite which can run in Tachyon
without modification to compare our VM against Google
V8 and the WebKit interpreter. The resulting times are
shown in Table 1. Because the original benchmarks run
very quickly (< 10ms), the times measured are for a total of
400 runs of each benchmark.

Benchmark Tachyon Google V8 WebKit Int.
access-binary-trees 20.522 0.473 4.553
access-fannkuck 18.002 2.445 34.871
access-nsieve 4.839 0.686 7.355
bitops-3bit-bits-in-byte 1.890 0.636 9.019
bitops-bits-in-byte 6.301 2.294 11.723
bitops-bitwise-and 30.971 3.436 7.915
bitops-nsieve-bits 7.005 2.347 15.39
controlflow-recursive 6.275 0.739 6.076
crypto-md5 13.789 0.724 7.357
crypto-sha1 15.050 0.870 7.372

Table 1: Running times (in seconds) of SunSpider
benchmarks under Tachyon, Google V8 and the We-
bKit interpreter.

The results in Table 1 show that the Tachyon JIT cur-
rently produces code that is several times slower on average
than that produced by Google V8’s JIT. We believe this
is largely due to the fact that object property accesses (in-
cluding global variable accesses and global function calls) are
unoptimized in our system. Each such access requires a func-
tion call and a hash table lookup on the object. Benchmarks
which do not involve property accesses, such as bitops-

3bit-bits-in-byte are those where Tachyon compares the
least unfavorably to V8. Conversely, Tachyon does signifi-
cantly worse than both V8 and the WebKit interpreter in
access-binary-trees, a benchmark that is very heavy in
terms of property accesses.

At the time of this writing, the Tachyon source code, ex-
cluding unit tests and automatically generated parser code,
occupies approximately 75 KLOC, compared to around 375
KLOC for V8 and 550 KLOC for SpiderMonkey. Tachyon is
clearly still in its infancy, but since it is a large and complex
piece of software, we have decided to also use the time it
takes Tachyon to compile itself as a benchmark. We believe
this is a more representative measure of Tachyon’s perfor-
mance than the JS microbenchmarks widely used today.

Compilation times for Tachyon, first running under V8
and then running under itself are given in Table 2. These

5https://github.com/Tachyon-Team/Tachyon/tree/dls2011

Benchmark Tachyon Google V8
Tachyon compilation time 1991 165

Table 2: Compilation times (in seconds) for Tachyon
under Tachyon and Google V8.

numbers indicate that Tachyon’s overall performance is about
an order of magnitude slower when compiled by itself than
when running under V8.
We believe that these numbers are encouraging. Tachyon,

despite its limitations, does significantly better than We-
bKit’s bytecode interpreter on several benchmarks. We have
already started work to improve Tachyon’s performance. For
instance, we have started prototyping a code patching mech-
anism to optimize accesses to globals. The substantial per-
formance improvements obtained encourage us to explore
other “low-hanging fruit” optimizations. We believe that we
may soon reach a level of performance that is more compet-
itive with that of V8.

7. FUTURE WORK
The Tachyon bootstrap currently occurs inside a custom

heap allocated inside the Google V8 process. As such, if
one wants to execute Tachyon while bootstrapped, we cur-
rently have to begin the bootstrap compilation of Tachyon
anew. We are currently working on the implementation of a
memory dump of the Tachyon heap (all machine code and
heap data) into an ELF binary image file. This will allow
Tachyon to become truly independent of its host platform.
Tachyon currently has no garbage collector. It has been

built with a compacting, generational GC in mind, but this
GC is not yet complete. This currently imposes a limit on
the amount of memory programs can allocate during their
execution. Work has begun on the implementation of a GC.
This collector will initially be a single-threaded compacting
GC, and will be written in plain C, because of the wide
availability of debugging tools. However, we plan to even-
tually rewrite this in our extended JS dialect. We believe
this will make the GC easier to maintain in the long run,
as C code does not have direct access to the definitions of
memory layouts used by our heap-allocated objects.
Our current object representation is very simple. Each

object stores a hash map of property names to property
values. While easy to implement, this is inefficient both in
terms of running-time and space usage. As such, we plan
to factor out the name of properties and their position by
introducing a layout object, called maps in SELF [3] and
hidden classes in V8. An object then keeps a reference to
its layout object and only stores the values of its properties.
Layout objects can be shared by multiple objects with the
same layout.
The subset of ES5 supported by Tachyon has proven suffi-

cient to compile Tachyon itself. A few features are still miss-
ing, however. Namely floating-point numbers, exceptions,
regular expressions, eval and object property attributes.
We do not foresee any difficulties in implementing the miss-
ing features. The compiler has been designed with support
for features like eval in mind. Once these missing features
are implemented, we believe Tachyon will be able to run
most JS benchmarks currently available.
Besides getting Tachyon to support all of ES5, one of our

medium-term goals is to bring its performance to a compet-
itive level. Our project has thus far been mostly focused on
rapidly achieving a working bootstrap compilation. How-
ever, we believe it is important for our compiler to generate
quality code if we are to compare it to other existing imple-
mentations. As such, we aim to reach a performance level
within a factor of two of the best existing JS implementa-
tions within the next year. Another performance goal is to
improve the speed at which Tachyon compiles source code.
This will be partly achieved by having Tachyon generate
better code when compiling itself.

Since Tachyon is being developed as a research platform,
we intend to use it to experiment with novel ideas. One area
we plan to explore is the use of more aggressive speculative
optimizations. We intend to test the concept of “optimistic”
optimizations: optimizations that are likely to be safe given
the current state of a running program, but are not guar-
anteed safe for its entire execution. Such opportunities for
optimizations can be discovered using combination of pro-
filing and static analysis. Aggressively optimized code will
then be generated under the optimistic assumption that the
said optimizations will remain applicable, but guards need
to be inserted in the code so that it can be deoptimized
should this assumption be invalidated.

Tachyon currently runs inside of the Google V8 shell,
which is a console program. This allows us to implement
the ES5 specification, but does not allow us to use Tachyon
inside a web browser. Since the main use for JS at this
time is within web pages, it is one of our main goals to
eventually integrate Tachyon into a web browser of some
sort. Mozilla Corp. has expressed interest in implement-
ing an HTML DOM tree in JS for an experimental web
browser. We believe this may be a very interesting platform
for Tachyon to integrate into. We are also looking at node.js
as a possible alternative.

8. CONCLUSION
JS is currently one of the most widespread dynamic lan-

guages. As web applications become more complex, JS per-
formance is becoming increasingly important. Existing JS
engines, even when they are open-source, are difficult to
modify. A flexible research platform is therefore needed in
order to design, implement and evaluate new compilation
techniques for JS. We have presented Tachyon, a self-hosted
JS virtual machine that aims to fill this void. Tachyon is it-
self written in an extended dialect of JS. We have shown that
this implementation decision allows the system to be quickly
developped and easily modified. Tachyon is thus well-suited
to rapid prototyping of new compilation strategies. For in-
stance, it already supports two different register allocators
and two target architectures. Tachyon currently supports a
subset of the full ES5 specification that is sufficient to enable
the bootstrapping process.

We have shown that the current version of Tachyon, de-
spite not having been optimized for performance of the gen-
erated code, is faster than the WebKit interpreter on some
benchmarks from the popular SunSpider suite. We believe
that, once some straightforward optimizations are added,
the performance of Tachyon will be competitive with exist-
ing JS JIT-based VMs. The flexibility of the compiler will
also allow deeper optimizations to be investigated.

Tachyon is publicly available under a Modified BSD li-
cense on GitHub. Contributions are welcome!

9. ACKNOWLEDGMENTS
This work was supported in part by the Natural Sciences

and Engineering Research Council of Canada (NSERC), the
Fonds Québécois de la Recherche sur la Nature et les Tech-
nologies (FQRNT) and Mozilla Corporation.

We wish to thank David Haguenauer, Éric Thivierge, Olivier
Matz and Alexandre St-Aubin for reviewing drafts of this
paper.

10. REFERENCES
[1] C. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo.

Tracing the meta-level: PyPy’s tracing JIT compiler.
In Proceedings of the 2009 workshop on the
Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems,
pages 18–25. ACM, 2009.

[2] G. Bracha and D. Ungar. Mirrors: design principles
for meta-level facilities of object-oriented
programming languages. In Proceedings of the 2004
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 331–344, New York, NY, USA, 2004. ACM.

[3] C. Chambers, D. Ungar, and E. Lee. An efficient
implementation of Self, a dynamically-typed
object-oriented language based on prototypes. In
Proceedings of the 1989 ACM SIGPLAN conference
on Object-oriented programming systems, languages
and applications, pages 49–70, New York, NY, USA,
1989. ACM.

[4] D. Crockford. JavaScript: The Good Parts, chapter 4,
page 42. O’Reilly, 2008.

[5] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
F. Zadeck. An efficient method of computing static
single assignment form. In Proceedings of the 1989
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 25–35. ACM, 1989.

[6] A. Gal, B. Eich, M. Shaver, D. Anderson,
D. Mandelin, M. Haghighat, B. Kaplan, G. Hoare,
B. Zbarsky, J. Orendorff, et al. Trace-based
just-in-time type specialization for dynamic languages.
In Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation,
pages 465–478. ACM, 2009.

[7] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the future: the story of Squeak, a
practical Smalltalk written in itself. In Proceedings of
the 1997 ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, volume 32, pages 318–326. ACM, ACM
Press, 1997.

[8] E. C. M. A. International. ECMA-262: ECMAScript
Language Specification. ECMA (European Association
for Standardizing Information and Communication
Systems), Geneva, Switzerland, third edition, Dec.
1999.

[9] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. Proceedings of the 2004 IEEE/ACM
international symposium on Code generation and
optimization, 0:75, 2004.

[10] F. Logozzo and H. Venter. RATA: Rapid Atomic Type
Analysis by Abstract Interpretation–Application to

JavaScript Optimization. In Proceedings of the 2010
international conference on Compiler construction,
pages 66–83. Springer, 2010.

[11] F. Loitsch. JavaScript to Scheme compilation. In
Proceedings of the 2005 Workshop on Scheme and
Functional Programming, pages 101–116, september
2005.

[12] M. Poletto and V. Sarkar. Linear scan register
allocation. ACM Transactions on Programming
Languages and Systems, 21:895–913, September 1999.

[13] P. Ratanaworabhan, B. Livshits, and B. Zorn.
JSMeter: Comparing the behavior of JavaScript
benchmarks with real Web applications. In Proceedings
of the 2010 USENIX conference on Web application
development, page 3. USENIX Association, 2010.

[14] G. Richards, C. Hammer, B. Burg, and J. Vitek. The
eval that men do – a large-scale study of the use of
eval in JavaScript applications. In European
Conference on Object-Oriented Programming.
Springer, 2011.

[15] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
analysis of the dynamic behavior of JavaScript
programs. In Proceedings of the 2010 ACM SIGPLAN
conference on Programming language design and
implementation, pages 1–12. ACM, 2010.

[16] A. Rigo and S. Pedroni. PyPy’s approach to virtual
machine construction. In Companion to the 2006
ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications,
pages 944–953. ACM, 2006.

[17] R. Sol, C. Guillon, F. M. Q. a. Pereira, and M. A. S.
Bigonha. Dynamic elimination of overflow tests in a
trace compiler. In Proceedings of the 2011
international conference on Compiler construction,
pages 2–21, Berlin, Heidelberg, 2011. Springer-Verlag.

[18] D. Ungar, A. Spitz, and A. Ausch. Constructing a
metacircular virtual machine in an exploratory
programming environment. In Companion to the 2005
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 11–20, New York, NY, USA, 2005. ACM.

[19] M. Wegman and F. Zadeck. Constant propagation
with conditional branches. ACM Transactions on
Programming Languages and Systems, 13(2):181–210,
1991.

[20] C. Wimmer and M. Franz. Linear scan register
allocation on SSA form. In Proceedings of the 2010
IEEE/ACM international symposium on Code
generation and optimization, pages 170–179, New
York, NY, USA, 2010. ACM.

CHAPTER 4

EAGER BASIC BLOCK VERSIONING

In this chapter, we present the first article on BBV we have submitted for publica-

tion. The final, published version of the article is found in Chapter 5. We have included

this original version of our first BBV publication because the technique we developed,

and its performance characteristics, went on to evolve significantly during the year be-

tween the first and final submissions. The article, Removing Dynamic Type Tests with

Context-Driven Basic Block Versioning, explains the core ideas behind what we now re-

fer to as eager BBV. The article presented in this chapter is publicly available through

arxiv.org [5].

4.1 Problem and Motivation

As discussed in previous chapters, an implementation of a dynamically typed pro-

gramming language invariably contains implicit dynamic type checks as part of its se-

mantics. Most of these type tests are redundant, simply because most variables and

object fields within a program do not change type at run time. As such, we would like to

eliminate as many redundant type tests as possible in order to maximize performance.

The traditional way to eliminate dynamic type checks is to do program analysis,

either at the intraprocedural, or at the interprocedural (whole-program) level. This is

problematic for multiple reasons:

— Program analyses are expensive, both in terms of execution time and memory.

— JIT compilers must pay for the overhead of optimization during program execu-

tion, and may run on resource-constrained devices such as cellphones.

— Program analyses are limited in precision. There is a fundamental limit to the

amount of information that can be inferred about a program without executing it,

and trying to extract more precise information inevitably comes at significantly

increased analysis cost.

The 2010 article Interprocedural Analysis with Lazy Propagation [26] illustrates the

potentially high overhead of whole-program static type analyses, with program analy-

sis times up to over two minutes, and memory usage potentially up to 140 megabytes,

for benchmarks programs which are only a few hundred lines long. This analysis uses

context-sensitivity to try and increase precision, but still suffers important limitations

due to its ahead of time nature.

Program analyses running in ahead of time compilers struggle to predict the behavior

of running programs, in part because they lack data, as they do not have access to pro-

gram inputs. In contrast, JIT compilers offer an advantage which should be immensely

powerful: they can observe programs and the data they manipulate at execution time. A

JIT compiler not only has access to a program’s input, it should, in principle, be able to

observe the type of any variable at any point during a program’s execution.

Previous work on tracing JIT compilers is based on this principle. A tracing JIT only

compiles the parts of a program that are executed. Tracing JITs are also able to perform

simple analyses on long traces (recorded linear sequence of instructions). Among other

things, they can perform some simple type propagation. This is inexpensive, and it is

based on sequences of instructions that are actually executed at run time, as opposed to

an ahead of time prediction of what might be executed.

The literature on tracing compilation, particularly the papers written about Mozilla’s

TraceMonkey compiler, seemed very enthusiastic about the technique, painting it as a

JIT compilation miracle. Unfortunately, our own efforts at implementing a tracing JIT

compiler, and meetings with Mozilla compiler engineers, painted a different picture.

TraceMonkey was retired in 2011, in part because of limitations of the tracing algorithm

it implemented. One of the main flaws of this technique was that it dealt very poorly

with loops containing many unpredictable branches, which caused it to compile an ex-

ponentially large number of traces.

My previous M.Sc. work on McVM was based on the idea of a JIT compiler inter-

cepting information about argument types when function calls occur, and then using this

information to compile one or more type-specialized versions of a function [9]. This type

information would be fed into an intraprocedural fixed-point type analysis to eliminate

33

type checks on local variables.

McVM was able to perform some degree of interprocedural type specialization at

relatively low cost, but its ability to eliminate local type checks was still constrained by

the precision limitations of intraprocedural type analyses. McVM was also unable to

propagate type information through recursive function calls.

4.2 Basic Block Versioning

BBV is a technique that operates at the level of individual basic blocks. A basic

block is a single-entry single-exit sequence of IR instructions, terminated by a branch

instruction that may jump to one or more successor basic blocks. Branch instructions

include unconditional jumps, conditional jumps as well as type test primitives. The ret

(return) and throw instructions are also considered branch instructions.

The technique, as presented here, clones basic blocks speculatively at method com-

pilation time. The basic blocks are cloned so that they can be type-specialized. That is,

each basic block is specialized based on the types of live variables at the entry of the

said block. Basic block versioning is sensitive to control-flow, and type test primitives

are used to accumulate type information and propagate this information to successor

blocks.

BBV can be seen as a form of controlled, systematic tail duplication, or an unfolding

of the control flow graph. It is similar to a type analysis, but instead of computing a fixed

point on the types of variables, it is computing a fixed point on the generation of new

block versions. Individual block versions are keyed based on the types of variables live

at the block entry. New block versions cease to be created when no new variable type

combinations occur for a given block, or when a hard limit on the number of versions

for any given block is reached.

Figures 4.1 and 4.2 illustrate the tail splitting and type propagation performed by

BBV at a small scale. In Figure 4.1, a test is performed to determine if variable n has

type int32 or not. We can infer that if we reach block A, then n must be int32.

Correspondingly, if we reach block B, then n cannot be int32. Unfortunately, in block

34

A

is_int32(n)

B

C

n is not int32n is int32

n is ???

Figure 4.1: Type test and control-flow merge without BBV.

A

is_int32(n)

B

C

n is not int32n is int32

C'

n is int32 n is not int32

Figure 4.2: Type test and tail splitting with BBV.

C, we have a control flow merge, and we know nothing about the type of n. In Figure 4.2,

we have created two versions of block C, such that type information about n can be

preserved in each of them.

4.3 Results

The article demonstrates that the number of type tests performed on benchmarks

can be significantly reduced. This is done at the cost of a code size increase, but the

increase is shown to be moderate. The main flaw of the approach, however, is that

35

despite important reductions in the number of type tests, we were unable, with this early

version of the BBV algorithm, to show execution time improvements.

Eager basic block versioning succeeds in reducing the number of type checks, but

increases code size too much in some cases, resulting in a higher occurrence of cache

misses. A key insight, the introduction of laziness, improves the performance of BBV

on all metrics, and enables execution time as well as precision improvements. This is

discussed in Chapter 5.

36

Removing Dynamic Type Tests with
Context-Driven Basic Block Versioning

Maxime Chevalier-Boisvert and Marc Feeley

DIRO, Université de Montréal, Montreal, QC, Canada

Abstract. Dynamic typing is an important feature of dynamic program-
ming languages. Primitive operators such as those for performing arith-
metic and comparisons typically operate on a wide variety of input value
types, and as such, must internally implement some form of dynamic
type dispatch and type checking. Removing such type tests is important
for an efficient implementation.
In this paper, we examine the effectiveness of a novel approach to reduc-
ing the number of dynamically executed type tests called context-driven
basic block versioning. This simple technique clones and specializes ba-
sic blocks in such a way as to allow the compiler to accumulate type
information while machine code is generated, without a separate type
analysis pass. The accumulated information allows the removal of some
redundant type tests, particularly in performance-critical paths.
We have implemented intraprocedural context-driven basic block ver-
sioning in a JavaScript JIT compiler. For comparison, we have also im-
plemented a classical flow-based type analysis operating on the same
concrete types. Our results show that basic block versioning performs
better on most benchmarks and removes a large fraction of type tests
at the expense of a moderate code size increase. We believe that this
technique offers a good tradeoff between implementation complexity and
performance, and is suitable for integration in production JIT compilers.

1 Introduction

Dynamic programming languages make heavy use of late binding in their seman-
tics. In essence this means doing at run time what can be done before run time in
other programming languages, for example type checking, type dispatch, func-
tion redefinition, code linking, program evaluation (e.g. eval), and compilation
(e.g. JIT compilation). In dynamic programming languages such as JavaScript,
Python, Ruby and Scheme, there are no type annotations on variables and types
are instead associated with values. Primitive operations, such as +, must verify
that the operand values are of an acceptable type (type checking) and must use
the types of the values to select the operation, such as integer addition, float-
ing point addition, or string concatenation (type dispatching). We will use the
generic term type test to mean a run time operation that determines if a value
belongs to a given type. Type checking and dispatching are built with type tests.

VMs for dynamic programming languages must tackle the run time overhead
caused by the dynamic features to achieve an efficient execution. Clever type

representation and runtime system organization can help reduce the cost of the
dynamic features. In this paper we focus on reducing the number of type tests
executed, which is a complementary approach.

Static type analyses which infer a type for each variable can help remove
and in some cases eliminate type test cost. However, such analyses are of lim-
ited applicability in dynamic languages because of the run time cost and the
presence of generic operators. A whole program analysis provides good preci-
sion, compared to a more local analysis, but it is time consuming, which is an
issue when compilation is done during program execution. Moreover, the results
are generally invalidated when functions are redefined and code is dynamically
loaded or evaluated, requiring a new program analysis. This often means that
analysis precision must be traded for speed. Intraprocedural analyses are a good
compromise when such dynamic features are used often, the program is large,
the running time is short or a simple VM design is desired. The complexity of the
type hierarchy for the numerical types may negatively impact the precision of the
type analysis due to its conservative nature. To implement the numerical types
of the language or for performance, a VM may use several concrete types for
numbers (e.g. fixed precision integers, infinite precision integers, floating point
numbers, complex numbers, etc). The VM automatically converts from one rep-
resentation to another when an operator receives mixed-representation operands
or limit cases are encountered (e.g. overflows). Variables containing numbers will
often have to be assigned a type which is the union of some concrete numerical
types (e.g. int ∪ float) if they store the result of an arithmetic operator. This
means that a type dispatch will have to be executed when this variable is used
as an operand of another arithmetic operator. This is an important issue due
to the frequent use of arithmetic in typical programs (for example an innocuous
looking i++ in a loop will typically require a type dispatch and overflow check).

We propose a new approach which reduces the number of type tests by elim-
inating those that are redundant within each function. Basic block versioning
aims to be a simple and efficient technique mixing code generation, analysis and
optimization. Section 2 explains the basic block versioning approach in more de-
tails. An implementation of our approach in a JavaScript compiler is described
in Section 3 and evaluated in Section 4. Related work is presented in Section 5.

2 Basic Block Versioning

function f(n) {
if (n<0) n = n+1;
return n+1;

}

Fig. 1. Definition for function f and the corresponding high-level control flow graph.

2

Fig. 2. Control flow graph after the inlining of the primitive operators neg? and inc.

The basic block versioning approach generates one or more versions of each
live basic block based on type information derived from the type tests executed
by the code. The type analysis and code generation are performed together,
generating on-demand new versions of blocks specialized to the typing context
of predecessor blocks.

An important difference between this approach and traditional type analyses
is that basic block versioning does not compute a fixed-point on types, but rather
computes a fixed-point on the generation of new block versions, each associated
with a configuration of incoming types. Values which have different types at the
same program point are handled more precisely with basic block versioning. In
a traditional type analysis the union of the possible types would be assigned to
the value, causing the analysis to be conservative. With basic block versioning,
distinct basic blocks will be created for each type tested previously, allowing a
more precise tracking of types. Because versions are created on demand, only
versions for the relevant type combinations are created.

To illustrate this approach we will use a simple example in a hypothetical
dynamically typed language similar only in syntax to JavaScript. Consider the
function f whose definition and corresponding high-level control flow graph are
shown in Figure 1. Lets assume that there are only two concrete types for num-
bers: int, a fixed precision integer, and float, a floating point number.1 The
value of parameter n must be one of these two types, otherwise it is a type error.
The primitive operations neg?(n) and inc(n) must include a type dispatch to
select the appropriate operation based on the concrete type of n. Inlining these
primitive operations makes the type tests explicit as shown in the control flow
graph in Figure 2. Note that basic block X has been expanded to basic blocks
A-D, while Y has been expanded to E-H, and Z has been expanded to I-L. Note
that for simplicity we will assume that the inc_int(n) operation yields an int
(i.e. there is no overflow check).

Basic block versioning starts compiling basic block A with a context where
value n is of an unknown type. This will generate the code for the int?(n)

1 Note that JavaScript has a single type for numbers, which corresponds to IEEE 64-
bit floating point numbers, but an implementation of JavaScript could implement
numbers with these two concrete types to benefit from the performance of integer
arithmetic for integer loop iteration variables and array indexing.

3

type test and will schedule the compilation of a version of block B, called B¬int,
where the value n is known to not be an int and will schedule the compilation of
a version of block C, called Cint, where the value n is known to be an int. Our
use of subscripts is a purely notational way of keeping track of the type context
information, which only needs to give information on n in this example. When
basic block Cint is compiled, code is generated for the neg?_int(n) test and
this schedules the compilation of versions of blocks E and I, called Eint and Iint
respectively, where the value n is known to be an int. Note that the compilation
of B¬int will cause the compilation of Dfloat, which will also schedule the
compilation of versions of blocks E and I but in a different context, where the
value n is known to be a float (blocks Efloat and Ifloat respectively).

The type tests in the four blocks Eint, Efloat, Iint and Ifloat can be
removed and replaced by direct jumps to the appropriate destination blocks.
For example Eint becomes a direct jump to Gint and Efloat becomes a direct
jump to Ffloat. Because Gint and Hfloat jump respectively to Iint and Ifloat,
the type tests in those blocks are also removed. Note that the final generated
code implements the same control flow graph as Figure 3. Two of the three type
dispatch operations in the original code have been removed.

Fig. 3. Final control flow of function f after basic block versioning.

Let us now consider what would happen if the inc_int(n) operations de-
tected integer overflow and yielded a float result in that case. Then the com-
pilation of basic block Gint would schedule two versions of the successor basic
block I: Iint for the case where there is no overflow, and Ifloat for the case where
there is an overflow. Due to the normal removal of type tests, when inc_int(n)
would overflow, a float would be stored in n followed by a direct jump to block
Lfloat. Thus the only change in the control flow of Figure 3 is that block Gint
has an edge to Lfloat in addition to Kint. So here too a single type dispatch is
needed in function f.

In theory, the number of possible type configurations in a context grows
combinatorially with the number of live values whose type is being accounted
for and the number of types they can have. We believe that a combinatorial
explosion is unlikely to be a problem in practice because typically the number
of values live at a given program point is small and the number of possible types
of a value is small.

There are pathological cases where a large number of block versions are
needed to account for all the possible incoming type combinations. To prevent
such occurrences, a simple approach is to place an arbitrary limit per block on the
number of versions that are compiled. Once this limit is hit for a given block,

4

a general version of the block will be compiled, which makes no assumptions
about incoming types, i.e. all values are of unknown type.

If more versions of a block would be required than the block version limit
allows, it is advantageous to compile the versions which will be executed most
often. This can be done by monitoring the frequency of execution of each basic
block (with a counter per block) prior to the JIT compilation. Generating linear
machine code sequences along hot paths first has the beneficial effect that it will
tend to prioritize the compilation of block versions for type combinations that
occur more frequently at run time. This strategy is used in our experiments.

An indirect benefit of our basic block versioning approach is that it auto-
matically unrolls some of the first iterations of loops in such a way that type
tests are hoisted out of loop bodies. For example, if variables of unknown type
are used unconditionnaly in a loop, their type will be tested inside the first iter-
ation of the loop. Once this test is performed in the first loop iteration, the type
information gained will allow the loop body to avoid the redundant type tests
for the remaining iterations.

3 Implementation in Higgs

We have implemented basic block versioning inside a JavaScript virtual machine
called Higgs. This virtual machine comprises an interpreter and a JIT com-
piler targeted at x86-64 POSIX platforms. The current implementation of Higgs
supports most of the ECMAScript 5 specification [1], with the exception of the
with statement, property attributes and getter-setter properties. Its runtime and
standard libraries are self-hosted, written in an extended dialect of ECMAScript
with low-level primitives. These low-level primitives are special IR instructions
which allow us to express type tests as well as integer and floating point machine
instructions in the implementation language.

In Higgs, the interpreter is used for profiling, and as a default, unoptimized
mode of execution. Functions are parsed into an abstract syntax tree, and lazily
compiled to an Static Single Assignment (SSA) Intermediate Representation
(IR) when they are first called. The interpreter then executes code in SSA form
directly. As code is executed by the interpreter, counters on basic blocks are
incremented every time a given block is executed. Frequency counts for each
potential callee are also collected at call sites.

The JIT compiler is triggered when the execution count for a function entry
block or loop header reaches a fixed threshold (currently set to 800). Callees are
first aggressively inlined into the function to be compiled. This is done by sub-
stituting the IR of callees at call sites. Calls are currently inlined only if profiling
data indicates that they are monomorphic, and the callee is 30 basic blocks or
less, which enables inlining of most runtime primitives. Call sites belonging to
blocks with higher execution frequencies are prioritized for inlining. Once inlin-
ing is complete, the fused IR containing inlined callees is then optimized using
simple subgraph substitution patterns before machine code generation proceeds.

5

Algorithm 1 Code generation with basic block versioning
1: procedure genFun(assembler, function)
2: workList← ∅ ⊲ Stack of block versions to be compiled
3: versionList← ∅ ⊲ List of existing block versions
4: getLabel(function.entryBlock, ∅, workList, versionList) ⊲ Begin compilation
5: while workList not empty do
6: block, ctx, label ← workList.pop()
7: assembler.addLabel(label) ⊲ Insert the label for this block
8: if block.execCount is 0 then
9: genStub(assembler, block, ctx, label)

10: else
11: for instr in block.instrs do ⊲ Generate code for each instruction
12: genInstr(assembler, instr, ctx, workList, versionList);
13: end for
14: end if
15: end while
16: end procedure
17: procedure getLabel(block, ctx, workList, versionList)
18: if numVersions(block) ≥ maxvers then ⊲ If the version limit for this block

was reached
19: bestMatch ← findBestMatch(block, ctx, versionList);
20: if bestMatch 6= null then ⊲ If a compatible match was found
21: return bestMatch
22: else
23: ctx ← ∅ ⊲ Make a generic version accepting all incoming contexts
24: end if
25: end if
26: label ← newLabel();
27: workList.push(〈block, ctx, label〉); ⊲ Queue the new version to be compiled
28: versionList.append(〈block, ctx, label〉); ⊲ Add the new block version to the list
29: return label
30: end procedure

6

Algorithm 2 Code generation with basic block versioning
31: procedure AddInt32.genInstr(assembler, instr, ctx, workList, versionList)
32: assembler.addInt32(instr.getArgs()) ⊲ Generate the add machine instruction
33: ctx.setOutType(instr, int32) ⊲ The output type of AddInt32 is always int32. If

an overflow occurs, the result is recomputed using AddFloat64
34: end procedure
35: procedure IsInt32.genInstr(assembler, instr, ctx, workList, versionList)
36: argType ← ctx.getType(instr.getArg(0))
37: if argType is int32 then
38: ctx.setOutType(instr, true)
39: else if argType 6= ⊤ then
40: ctx.setOutType(instr, false)
41: else
42: assembler.isInt32(instr.getArgs()) ⊲ Generate code for the type test
43: ctx.setOutType(instr, const)
44: end if
45: end procedure
46: procedure Jump.genInstr(assembler, instr, ctx, workList, versionList)
47: label ← getLabel(instr.target, ctx, workList, versionList)
48: assembler.jump(label)
49: end procedure
50: procedure IfTrue.genInstr(assembler, instr, ctx, workList, versionList)
51: arg ← instr.getArg(0)
52: argType ← ctx.getType(arg)
53: trueCtx ← ctx.copy() ⊲ New context for the true branch
54: if arg instanceof IsInt32 then
55: trueCtx.setType(arg.getArg(0), int32)
56: end if
57: if argType is true then
58: trueLabel ← getLabel(instr.trueTarget, trueCtx, workList, versionList)
59: assembler.jump(trueLabel)
60: else if argType is false then
61: falseLabel ← getLabel(instr.falseTarget, ctx, workList, versionList)
62: assembler.jump(falseLabel)
63: else
64: trueLabel ← getLabel(instr.trueTarget, trueCtx, workList, versionList)
65: falseLabel ← getLabel(instr.falseTarget, ctx, workList, versionList)
66: assembler.compare(arg, true) ⊲ Compare the argument to true
67: assembler.jumpIfEqual(trueLabel)
68: assembler.jump(falseLabel)
69: end if
70: end procedure

7

Machine code generation (see Algorithm 1) begins with the function’s entry
block and entry context pair being pushed on top of a stack which serves as a
work list. This stack is used to keep track of block versions to be compiled, and
enable depth-first generation of hot code paths. Code generation proceeds by
repeatedly popping a block and context pair to be compiled off the stack. If the
block to be compiled has an execution count of 0, stub code is generated out of
line, which spills live variables, invalidates the generated machine code for the
function and exits to the interpreter. Otherwise, code is generated by calling
code generation methods corresponding to each IR instruction to be compiled
in the current block, in order.

As each IR instruction in a block is compiled, information is both retrieved
from and inserted into the current context. Information retrieved may be used
to optimize the compilation of the current instruction (e.g. eliminate type tests).
Instructions will also write their own output type in the context if known. The
last instruction of a block, which must be a branch instruction, may potentially
push additional compilation requests on the work stack. More specifically, branch
instructions can request an assembler label for a version of a block corresponding
to the current context at the branch instruction. If such a version was already
compiled, the label is returned immediately. Otherwise, a new label is generated,
the block and the current context are pushed on the stack, to be compiled later.

To avoid pathological cases where a large number of versions could be gen-
erated for a given basic block, we limit the number of versions that may be
compiled. This is done with the maxvers parameter, which specifies how many
versions can be compiled for any single block. Once this limit is hit for a par-
ticular block, requests for new versions of this block will first try to find if an
inexact but compatible match for the incoming context can be found. An exist-
ing version is compatible with the incoming context if the value types assumed
by the existing version are the same as, or supertypes of, those specified in the
incoming context. If a compatible match is found, this match will be returned.
If not, a generic version of the block will be generated, which can accept all
incoming type combinations. When the maxvers parameter is set to zero, basic
block versioning is disabled, and only the generic version is generated.

3.1 Type tags and runtime primitives

The current version of Higgs segregates values into a few categories based on type
tags [13]. These categories are: 32-bit integers (int32), 64-bit floating point val-
ues (float64), garbage-collected references inside the Higgs heap (refptr), raw
pointers to C objects (rawptr) and miscellaneous JavaScript constants (const).
These type tags form a simple, first-degree notion of types which we use to drive
the basic block versioning approach. The current implementation of basic block
versioning in Higgs does not differentiate between references to object, arrays
and functions, but instead lumps all of these under the reference pointer cate-
gory. We do, however, distinguish between the boolean true and false constants
to enable the propagation of type test results.

8

We believe that this choice of a simple type representation is a worthwhile
way to investigate the effectiveness and potential of basic block versioning. Higgs
implements JavaScript operators as runtime library functions written in an ex-
tended dialect of JavaScript, and most of these functions use type tags to do
dynamic dispatch. As such, eliminating this first level of type tests is crucial to
improving the performance of the system as a whole. Extending the system to
use a more precise representation of types is part of future work.

function $rt_add(x, y) {
if ($ir_is_i32(x)) { // If x is integer

if ($ir_is_i32(y)) {
if (var r = $ir_add_i32_ovf(x, y))

return r;
else // Handle the overflow case

return $ir_add_f64($ir_i32_to_f64(x),
$ir_i32_to_f64(y));

} else if ($ir_is_f64(y))
return $ir_add_f64($ir_i32_to_f64(x), y);

} else if ($ir_is_f64(x)) { // If x is floating point
if ($ir_is_i32(y))

return $ir_add_f64(x, $ir_i32_to_f64(y));
else if ($ir_is_f64(y))

return $ir_add_f64(x, y);
}

// Evaluate arguments as strings and concatenate them
return $rt_strcat($rt_toString(x), $rt_toString(y));

}

Fig. 4. Implementation of the + operator

Figure 4 illustrates the implementation of the primitive + operator. As can
be seen, this function makes extensive use of low-level type test primitives such
as $ir_is_i32 and $ir_is_f64 to implement dynamic dispatch based on the
type tags of the input arguments. All other arithmetic and comparison primitives
implement a similar dispatch mechanism.

3.2 Flow-based representation analysis

To provide a point of comparison and contrast the capabilities of basic block
versioning with that of more traditional type analysis approaches, we have im-
plemented a forward flow-based representation analysis which computes a fixed-
point on the types of SSA values. The analysis is an adaptation of Wegbreit’s
algorithm as described in [26]. It is an intraprocedural constant propagation
analysis which propagates the types of SSA values in a flow-sensitive manner.

9

⊥ (∅, initial)

⊤ (ξ, unknown/any)

refptr rawptrint32 float64

const

true false

Fig. 5. Type lattice used by the representation analysis

Pseudocode for this analysis and some of its transfer functions is shown in Ap-
pendix A.

The representation analysis uses the same type representation (see Figure
5) as our basic block versioning implementation, and has similar type analysis
capabilities. It is able to gain information from type tests and forward this in-
formation along branches. It is also able to deduce, in some cases, that specific
branches will not be executed and ignore the effects of code that was determined
dead.

We have also extended the flow-based algorithm to ignore basic blocks which
are unexecuted (have an execution count of 0) at analysis time. This allows the
analysis to ignore some code paths not executed up to now, which is useful in
some cases, since primitive language operators often have multiple paths which
can result in different output types. If presumed dead blocks turn out to be
executed later, analysis results and associated compiled code will be invalidated
at run time. This was done to make the analysis more competitive with basic
block versioning which by construction ignores stubbed blocks, for which no
compiled code was generated.

3.3 Limitations

There are a few important limitations to the current implementation of basic
block versioning in Higgs. We do not, at this point, track the types of object prop-
erties. Global variables, which are properties of the global object in JavaScript,
are also untracked. We do not account for interprocedural flow of type informa-
tion either. That is, function parameter and return value types are assumed to
be unknown. Finally, the current implementation of Higgs does not implement
any kind of load-store forwarding optimization. These limitations are nontrivial
to tackle due to factors such as the late-bound nature of JavaScript, the poten-
tial presence of the eval construct, dynamic addition and deletion of properties
and the dynamic installation of getter-setter methods on object fields.

10

The results presented in this paper are entirely based on an intraprocedural
implementation of basic block versioning which accounts only for the types of
local variables and temporaries, in combination with aggressive inlining of library
and method calls. Extending basic block versioning to take object identity, array
and property type information into account constitutes future work.

4 Evaluation

To assess the effectiveness of basic block versioning, we have used a total of
24 benchmarks from the classic SunSpider and Google V8 suites. A handful of
benchmarks from both suites were not included in our tests because the current
Higgs implementation does not yet support them.

Figure 6 shows counts of dynamically executed type tests across all bench-
marks for the representation analysis and for basic block versioning with various
block version limits. These counts are relative to a baseline which has the ver-
sion limit set to 0, and thus only generates a default, unoptimized version of
each basic block, without attempting to eliminate any type tests. As can be seen
from the counts, the analysis produces a reduction in the number of dynamically
executed type tests over the unoptimized default on every benchmark. The basic
block versioning approach does at least as well as the analysis, and almost always
significantly better. Surprisingly, even with a version cap as low as 1 version per
basic block, the versioning approach is often competitive with the representation
analysis.

Raising the version cap reduces the number of tests performed with the
versioning approach in a seemingly asymptotic manner as we get closer to the
limit of what is achievable with our implementation. The versioning approach
does remarkably well on the bits-in-byte benchmark, with a reduction in the
number of type tests by a factor of over 50. This benchmark (see Figure 7) is an
ideal use case for our versioning approach. It is a tight loop performing bitwise
and arithmetic operations on integers which are all stored in local variables.
The versioning approach performs noticeably better than the analysis on this
test because it is able to hoist a type test on the function parameter b out of a
critical loop. The type of this parameter is initially unknown when entering the
function. The analysis on its own cannot achieve this, and so must repeat the test
every loop iteration. Note that neither the analysis nor the basic block versioning
approach need to test the type of c at run time because the variable is initialized
to an integer value before loop entry, and integer overflow never occurs, so the
overflow case remains a stub. The bitwise-and benchmark operates exclusively
on global variables, for which our system cannot extract types, and so neither the
type analysis nor the versioning approach show any improvement over baseline
for this benchmark.

A breakdown of relative type test counts by kind, averaged accross all bench-
marks (using the geometric mean) is shown in Figure 8. We see that the version-
ing approach is able to achieve better results than the representation analysis
across each kind of type test. The is_refptr category shows the least improve-

11

analysis maxvers=1 maxvers=2 maxvers=5 maxvers=∞

0%

25%

50%

75%

100%

partial-sum
s

v8-crypto
3d-m

orph
fasta

bits-in-byte
crypto-m

d5
deltablue
recursive

3d-raytrace
navier-stokes
nbody

nsieve-bits

0%

25%

50%

75%

100%

cordic

spectral-norm
richards

bitw
ise-and

fannkuch

crypto-sha1
v8-raytrace
3bits-byte
earley-boyer
3d-cube

nsieve

binary-trees

Fig. 6. Counts of dynamic type tests (relative to baseline)

12

function bitsinbyte(b) {
var m = 1, c = 0;
while(m < 0x100) {

if(b & m) c++;
m <<= 1;

}
return c;

}

function TimeFunc(func) {
var x, y, t;
for(var x = 0; x < 350; x++)
for(var y = 0; y < 256; y++) func(y);

}
TimeFunc(bitsinbyte);

Fig. 7. SunSpider bits-in-byte benchmark

analysis maxvers=1 maxvers=2 maxvers=5 maxvers=∞

0%

25%

50%

75%

100%

is_i32 is_f64 is_const is_refptr mean

Fig. 8. Type test counts by kind of type test (relative to baseline)

13

ment. This is likely because property access primitives are very large, and thus
seldom inlined, limiting the ability of both basic block versioning and the analy-
sis to propagate type information for reference values. We note that versioning is
much more effective than the analysis when it comes to eliminating is_float64
type tests. This is probably because integer and floating point types often get
intermixed, leading to cases where the analysis cannot eliminate such tests. The
versioning approach has the advantage that it can replicate and detangle integer
and floating point code paths. A limit of 5 versions per block eliminates 64% of
type tests on average (geometric mean), compared to 33% for the analysis.

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 4 5 6 7 8 9 ≥ 10

Fig. 9. Relative occurrence of block version counts

Figure 9 shows the relative proportion of blocks for which different numbers
of versions were generated, averaged accross all benchmarks (geometric mean).
As one might expect, the relative proportion of blocks tends to steadily decrease
as the number of versions is increased. Most blocks only have one or two versions,
and less than 9% have 5 versions or more. There are very few blocks which have
10 versions or more. These are a small minority, but such pathological cases do
occur in practice.

The function generating the most block versions in our tests is DrawLine from
the 3d-cube benchmark, which produces 32 versions of one particular block. This
function draws a line in screen space between point coordinates x1,y1 and x2,y2.
Multiple different values are computed inside DrawLine based on these points.
Each of the coordinate values can be either integer or floating point, which results
in a situation where there are several live variables, all of which can have two
different types. This creates an explosion in the number of versions of blocks
inside this function as basic block versioning tries to account for all possible
type combinations of these values. In practice, the values are either all integer,
or all floating point, but our implementation of basic block versioning is currently
unable to take advantage of this helpful fact. We have experimentally verified
that, in fact, only 17 of the 32 versions generated in DrawLine are actually
executed. A strategy for addressing this problem is discussed in Section 6.

14

analysis maxvers=1 maxvers=2 maxvers=5 maxvers=∞

0%

50%

100%

150%

200%

250%

300%

partial-sum
s

v8-crypto
3d-m

orph
fasta

bits-in-byte
crypto-m

d5
deltablue
recursive

3d-raytrace
navier-stokes
nbody

nsieve-bits

0%

50%

100%

150%

200%

250%

300%

cordic

spectral-norm
richards

bitw
ise-and

fannkuch

crypto-sha1
v8-raytrace
3bits-byte
earley-boyer
3d-cube

nsieve

binary-trees

Fig. 10. Code size growth for different block version limits

15

The effects of basic block versioning on the total generated code size are
shown in Figure 10. It is interesting to note that the representation analysis
almost always results in a slight reduction in code size. This is because the
analysis allows the elimination of type tests and the generation of more optimized
code, which is often smaller. On the other hand, basic block versioning can
generate multiple versions of basic blocks, which results in more generated code.
The volume of generated code does not increase linearly with the block version
cap. Rather, it tapers off as a limited number of versions tends to be generated
for each block. Even without a block version limit, the code size is less than
double that of the baseline in most cases. A limit of 5 versions per block results
in a mean code size increase of 69%.

5 Related Work

There have been multiple efforts to devise type analyses for dynamic languages.
The Rapid Atomic Type Analysis (RATA) [17] is an intraprocedural flow-sensitive
analysis based on abstract interpretation which aims to assign unique types to
each variable inside of a function. Attempts have also been made to define formal
semantics for a subset of dynamic languages such as JavaScript [4], Ruby [10]
and Python [3], sidestepping some of the complexity of these languages and mak-
ing them more amenable to traditional type inference techniques. There are also
flow-based interprocedural type analyses for JavaScript based on sophisticated
type lattices [15][16]. Such analyses are usable in the context of static code anal-
ysis, but take too long to execute to be usable in compilation and do not deal
with the complexities of dynamic code loading.

More recently, work done by Brian Hackett et al. resulted in an interpro-
cedural hybrid type analysis for JavaScript suitable for use in production JIT
compilers [14]. This analysis represents a great step forward for dynamic lan-
guages, but as with other type analyses, must assign one type to each value,
which makes it vulnerable to imprecise type information polluting analysis re-
sults. Basic block versioning could potentially help improve on the results of such
an analysis by hoisting tests out of loops and generating multiple optimized code
paths where appropriate.

Trace compilation aims to record long sequences of instructions executed in-
side of hot loops [12]. Such sequences of instructions often make optimization
easier. Type information can be accumulated along traces and used to specialize
the code to remove type tests [11], overflow checks [23] and unnecessary alloca-
tions [6]. Tracing is similar to basic block versioning, in that context updating
works on essentially linear code fragments and accumulates type information
during compilation. However, trace compilation incurs several difficulties and
corner cases in practice, such as the potential for trace explosion if there is a
large number of control-flow paths going through a loop, and poor capability
to deal with code that is not loop-based. Work on trace regions by Bebenita et
al. [5] introduces traces with join nodes. These join nodes can potentially elimi-

16

nate tail duplication among traces and avoid the problem of trace explosion, but
also makes the compiler architecture more complex.

Basic block versioning bears some similarities to classic compiler optimiza-
tions such as loop unrolling [9], loop peeling [24], and tail duplication, in that
it achieves some of the same results. Tail duplication and loop peeling are used
in the formation of hyperblocks [18], which are sets of basic blocks grouped to-
gether, such that control-flow may enter only into one of the blocks, but may exit
at multiple locations. This structure was designed to facilitate the optimization
of large units of code for VLIW architectures. A parallel can be drawn between
basic block versioning and Partial Redundancy Elimination (PRE) [19] in that
the versioning approach seeks to eliminate and hoists out of loops a specific kind
of redundant computation, that of dynamic type tests.

Basic block versioning is also similar to the idea of node splitting [25]. This
technique is an analysis device designed to make control-flow graphs reducible
and more amenable to analysis. The path splitting algorithm implemented in
the SUIF compiler [22] aims at improving reaching definition information by
replicating control-flow nodes in loops to eliminate joins. Unlike basic block ver-
sioning, these algorithm cannot gain information from type tests. The algorithms
as presented are also specifically targeted at loops, while basic block versioning
makes no special distinction. Similarly, a static analysis which replicates code to
eliminate conditional branches has been developed [20]. This algorithm operates
on a low-level intermediate representation, is intended to optimize loops and
does not specifically eliminate type tests.

Customization is a technique developed to optimize the SELF programming
language [7] which compiles multiple copies of methods, specialized based on
the receiver object type. Similarly, type-directed cloning [21] clones methods
based on argument types, which can produce more specialized code using richer
type information. The work of Maxime Chevalier-Boisvert et al. on Just-In-
Time (JIT) specialization for MATLAB [8] and similar work done for the MaJIC
MATLAB compiler [2] tries to capture argument types to dynamically compile
optimized copies of functions. All of these techniques are forms of type-driven
code duplication aimed at enhancing type information. Basic block versioning
operates at a lower level of granularity, which allows it to find optimization
opportunities inside of method bodies by duplicating code paths.

6 Future Work

Our current implementation only tracks type information intraprocedurally. It
would be desirable to extend basic block versioning in such a way that type
information can cross function call boundaries. This could be accomplished by
allowing functions to have multiple entry point blocks, specialized based on con-
text information coming from callers. Similarly, call continuation blocks (return
points) could also be versioned to allow information about return types to flow
back into the caller.

17

Another obvious extension of basic block versioning would be to collect more
detailed type information. For example, we may wish to propagate information
about global variable types, object identity and object field types. It may also
be desirable, in some cases, to know the exact value of some variable or object
field, particularly if this value is likely to remain constant. Numerical range
information could potentially be collected to help eliminate bound and overflow
checks.

Basic block versioning, as we have implemented it, sometimes generates ver-
sions that account for type combinations that never occur in practice. This could
potentially be addressed by generating stubs for the targets of cloned conditional
branches. Higgs already produces stubs for unexecuted blocks, but generates all
requested versions of a block if the block was ever executed in the past. Produc-
ing stubs for cloned branches would delay the generation of machine code for
these branch targets until we know for a fact that they are executed, avoiding
code generation for unnecessary code paths. The choice of where to generate
stubs could potentially be guided by profiling data.

Some of the information accumulated and propagated by basic block version-
ing may not actually be useful for optimization. This is likely to become a bigger
problem if the approach is extended to work accross function call boundaries, or
if more precise type and constant information is accumulated. An interesting av-
enue may be to choose which information to propagate based on usefulness. That
is, the most frequently executed type tests are probably the ones we should focus
our resources on. These tests should be dynamically identified through profiling
and used to decide which information to propagate.

7 Conclusion

We have introduced a novel compilation technique called context-driven basic
block versioning. This technique combines code generation with type analysis
to produce more optimized code through the accumulation of type information
during compilation. The versioning approach is able to perform optimizations
such as automatic hoisting of type tests and efficiently detangles code paths
along which multiple numerical types can occur. Our experiments show that in
most cases, basic block versioning eliminates significantly more dynamic type
tests than is possible using a traditional flow-based type analysis. It eliminates
64% of type tests on average with a limit of 5 versions per block, compared to
33% for the analysis, and never performs worse than such an analysis.

Basic block versioning trades code size for performance. Such a tradeoff is of-
ten desirable, particularly for performance-critical application kernels. We have
empirically demonstrated that although our implementation of basic block ver-
sioning does increase code size, the resulting increase is reasonably moderate,
and can easily be limited with techniques as simple as a hard limit on the number
of versions per basic block. In our experiments, a limit of 5 versions per block
results in a mean code size increase of 69%. More sophisticated implementa-

18

tions that adjust the amount of code replication allowed based on the execution
frequency of functions are certainly possible.

Basic block versioning is a simple and practical technique suitable for inte-
gration in real-world compilers. It requires little implementation effort and can
offer important advantages in JIT-compiled environments where type analysis
is often difficult. Dynamic languages, which perform a large number of dynamic
type tests, stand to benefit the most.

Higgs is open source and the code used in preparing this publication is avail-
able on GitHub2.

References

1. ECMA-262: ECMAScript Language Specification. European Association for Stan-
dardizing Information and Communication Systems (ECMA), Geneva, Switzer-
land, fifth edn. (2009)

2. Almási, G., Padua, D.: MaJIC: compiling MATLAB for speed and responsiveness.
In: Proceedings of the 2002 conference on Programming Language Design and
Implementation (PLDI). pp. 294–303. ACM New York (May 2002)

3. Ancona, D., Ancona, M., Cuni, A., Matsakis, N.D.: RPython: a step towards rec-
onciling dynamically and statically typed OO languages. In: Proceedings of the
2007 Dynamic Languages Symposium (DLS). pp. 53–64. ACM New York (2007)

4. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for
JavaScript. In: Proceedings of ECOOP 2005, pp. 428–452. Springer Berlin Hei-
delberg (2005)

5. Bebenita, M., Chang, M., Wagner, G., Gal, A., Wimmer, C., Franz, M.: Trace-
based compilation in execution environments without interpreters. In: Proceedings
of the 8th International Conference on the Principles and Practice of Programming
in Java (PPPJ). pp. 59–68. ACM New York (2010)

6. Bolz, C.F., Cuni, A., FijaBkowski, M., Leuschel, M., Pedroni, S., Rigo, A.: Alloca-
tion removal by partial evaluation in a tracing jit. In: Proceedings of the 20th ACM
SIGPLAN workshop on Partial Evaluation and Program Manipulation (PEPM).
pp. 43–52. ACM New York (2011)

7. Chambers, C., Ungar, D.: Customization: optimizing compiler technology for
SELF, a dynamically-typed object-oriented programming language. In: Proceed-
ings of the 1989 conference on Programming Language Design and Implementation
(PLDI). pp. 146–160. ACM New York (Jun 1989)

8. Chevalier-Boisvert, M., Hendren, L., Verbrugge, C.: Optimizing MATLAB through
just-in-time specialization. In: Proceedings of the 2010 international conference on
Compiler Construction (CC). pp. 46–65. Springer Berlin Heidelberg (2010)

9. Davidson, J.W., Jinturkar, S.: Aggressive loop unrolling in a retargetable, opti-
mizing compiler. In: Proceedings of the 1996 international conference on Compiler
Construction (CC). pp. 59–73. Springer Berlin Heidelberg (1996)

10. Furr, M., An, J.h.D., Foster, J.S., Hicks, M.: Static type inference for ruby. In:
Proceedings of the 2009 ACM Symposium on Applied Computing (SAC). pp. 1859–
1866. ACM New York (2009)

2 https://github.com/maximecb/Higgs/tree/cc2014

19

11. Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat, M.R., Ka-
plan, B., Hoare, G., Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E.W., Re-
itmaier, R., Bebenita, M., Chang, M., Franz, M.: Trace-based just-in-time type
specialization for dynamic languages. In: Proceedings of the 2009 conference on
Programming Language Design and Implementation (PLDI). pp. 465–478. ACM
New York (2009)

12. Gal, A., Probst, C.W., Franz, M.: HotpathVM: an effective jit compiler for resource-
constrained devices. In: Proceedings of the 2nd international conference on Virtual
Execution Environments (VEE). pp. 144–153. ACM New York (2006)

13. Gudeman, D.: Representing type information in dynamically typed languages
(1993)

14. Hackett, B., Guo, S.y.: Fast and precise hybrid type inference for JavaScript. In:
Proceedings of the 33rd ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI). pp. 239–250. ACM New York (Jun 2012)

15. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Proceed-
ings of the 16th International Symposium on Static Analysis (SAS). pp. 238–255.
Springer Berlin Heidelberg (2009)

16. Jensen, S.H., Møller, A., Thiemann, P.: Interprocedural analysis with lazy prop-
agation. In: Proceedings 17th International Static Analysis Symposium (SAS).
Springer Berlin Heidelberg (September 2010)

17. Logozzo, F., Venter, H.: RATA: rapid atomic type analysis by abstract interpre-
tation; application to JavaScript optimization. In: Proceedings of the 2010 inter-
national conference on Compiler Construction (CC). pp. 66–83. Springer Berlin
Heidelberg (2010)

18. Mahlke, S.A., Lin, D.C., Chen, W.Y., Hank, R.E., Bringmann, R.A.: Effective com-
piler support for predicated execution using the hyperblock. In: ACM SIGMICRO
Newsletter. vol. 23, pp. 45–54. IEEE Computer Society Press (1992)

19. Morel, E., Renvoise, C.: Global optimization by suppression of partial redundan-
cies. Commun. ACM 22(2), 96–103 (Feb 1979)

20. Mueller, F., Whalley, D.B.: Avoiding conditional branches by code replication.
In: Proceedings of the 1995 conference on Programming Language Design and
Implementation (PLDI). pp. 56–66. ACM New York (1995)

21. Plevyak, J., Chien, A.A.: Type directed cloning for object-oriented programs. In:
Proceedings of the Workshop for Languages and Compilers for Parallel Computing
(LCPC). pp. 566–580 (1995)

22. Poletto, M.A.: Path splitting: a technique for improving data flow analysis. Ph.D.
thesis, MIT Laboratory for Computer Science (1995)

23. Sol, R., Guillon, C., QuintÃčo Pereira, F., Bigonha, M.: Dynamic elimination of
overflow tests in a trace compiler. In: Knoop, J. (ed.) Proceedings of the 2011
international conference on Compiler Construction (CC), pp. 2–21. Springer Berlin
Heidelberg (2011)

24. Song, L., Kavi, K.M.: A technique for variable dependence driven loop peeling.
In: Algorithms and Architectures for Parallel Processing, 2002. Proceedings. Fifth
International Conference on. pp. 390–395. IEEE (2002)

25. Unger, S., Mueller, F.: Handling irreducible loops: optimized node splitting versus
dj-graphs. ACM Transactions on Programming Languages and Systems (TOPLAS)
24(4), 299–333 (Jul 2002)

26. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems (TOPLAS) 13(2),
181–210 (Apr 1991)

20

A First Appendix

Algorithm 3 Type propagation analysis
1: procedure typeProp(function)
2: outTypes ← ∅
3: edgeTypes ← ∅
4: visited ← ∅ ⊲ Set of visited control-flow edges
5: workList ← {〈null, function.entryBlock〉}
6: while workList not empty do
7: edge ← workList.dequeue()
8: block ← edge.succ
9: if block.execCount is 0 then

10: continue ⊲ Ignore yet unexecuted blocks (stubs)
11: end if
12: visited.add(edge)
13: curTypes← ∅ ⊲ Merge type info from predecessors
14: for edge in block.incoming do
15: if edge in visited then
16: curTypes ← curTypes.merge(edgeTypes.get(edge))
17: end if
18: end for
19: for phiNode in block.phis do
20: t ← evalPhi(phiNode, block, visited)
21: curTypes.set(phi, t)
22: outTypes.set(phi, t)
23: end for
24: for instr in block.instrs do
25: t ← evalInstr(instr, curTypes)
26: curTypes.set(instr, t)
27: outTypes.set(instr, t)
28: end for
29: end while
30: return outTypes;
31: end procedure

21

Algorithm 4 Transfer functions for the type propagation analysis
32: procedure evalPhi(phiNode, block, visited)
33: t← ⊥
34: for edge in block.incoming do
35: if edge in visited then
36: predType = getType(edgeTypes.get(edge), phiNode.getArg(edge))
37: if predType is ⊥ then
38: return ⊥
39: end if
40: t = t.merge(predType)
41: end if
42: end for
43: return t
44: end procedure
45: procedure AddInt32.evalInstr(instr, curTypes)
46: return int32 ⊲ The output type of AddInt32 is always int32. If an overflow

occurs, the result is recomputed using AddFloat64
47: end procedure
48: procedure IsInt32.evalInstr(instr, curTypes)
49: argType ← getType(curTypes, instr.getArg(0))
50: if argType is ⊥ then ⊲ If the argument type is not yet evaluated
51: return ⊥
52: else if argType is ⊤ then ⊲ If the argument type is unknown
53: return const
54: else if argType is int32 then
55: return true
56: else
57: return false
58: end if
59: end procedure
60: procedure IfTrue.evalInstr(instr, curTypes)
61: arg ← instr.getArg(0)
62: argType ← getType(curTypes, arg)
63: if argType is ⊥ then
64: return ⊥
65: end if
66: testVal ← null
67: testType ← ⊤
68: if arg instanceof IsInt32 then
69: testVal ← arg.getArg(0) ⊲ Get the SSA value whose type is being tested
70: testType ← int32
71: end if
72: if argType is true or argType is const or argType is ⊤ then
73: queueSucc(instr.trueTarget, typeMap, testVal, testType) ⊲ Queue the true

branch, and propagate the test value’s type (if applicable)
74: end if
75: if argType is false or argType is const or argType is ⊤ then
76: queueSucc(instr.falseTarget, typeMap, null, ⊤)
77: end if
78: return ⊥
79: end procedure

22

CHAPTER 5

LAZY BASIC BLOCK VERSIONING

5.1 A Problem with Eager BBV

In the previous chapter, we presented our first attempt at an eager BBV implemen-

tation, which generates all basic block versions for a given method at once, when this

method is compiled. This was a mixed success. On the one hand, we were able to elim-

inate 64% of type tag tests, which is almost twice as much as what an intraprocedural

dataflow analysis could achieve. However, this came at the cost of a 69% average code

size increase. The large code size increase resulted in poor instruction cache utiliza-

tion (see Section 8.4), which made it so we could not show measurable performance

improvements in practice.

The main issue with eagerly generating block versions for a given function at method

compilation time is that it requires the use of heuristics. That is, we must attempt to guess

which block versions will be needed at execution time. Doing this before executing a

function must inevitably rely on approximate information, which means we must con-

servatively generate block versions corresponding to combinations of types which will

never occur at execution time.

Generating redundant block versions is problematic for multiple reasons. For one, it

wastes compilation time and memory resources. It also follows that redundant versions

result in inefficient use of instruction caches, since the resulting machine code must be

placed somewhere, and we cannot know which versions are redundant at code generation

time. Finally, redundant versions eat up part of our versioning budget, which would have

been better spent on versions that will actually be executed.

The approach presented in Chapter 4 is not purely eager. Higgs segregates numerical

values into small integers and floating-point values. As such, it must insert overflow

checks after most integer arithmetic operations. Overflows are rare, but when they occur,

integer values must be promoted to floating-point values. Unfortunately, even though

overflows are rare, it is often difficult to prove at code generation time that they cannot

happen. The result is that if basic block versions are generated in a purely eager manner,

many versions are wasted trying to handle cases where integer overflows could occur,

but do not in practice.

The solution we have found is to avoid eagerly generating block versions for over-

flow paths, and instead speculate that overflows will not occur. Machine code stubs 1

are generated to detect overflows. When such a stub is executed, it calls back into the

compiler, which throws away the code for the current function and recompiles it in its

entirety. Recompiling whole functions is costly, but this is feasible because of how rare

integer overflows are in most programs. This strategy is a form of lazy handling of in-

teger overflows, which avoids wasting basic block versions on overflows which do not

occur.

5.2 Laziness

The strategy we have used to avoid generating block versions corresponding to inte-

ger overflows is a form of speculative optimizations. Unfortunately, this strategy cannot

be applied everywhere because recompiling entire functions is quite expensive. Enter

lazy basic block versioning. Our key insight is that it should be possible, using machine

code stubs, to lazily generate block versions when they are actually needed, that is, when

a piece of code first tries to branch to the said version. Using this strategy, it then be-

comes possible to generate exactly the set of block versions corresponding to types that

do occur at execution time, no more, no less.

Figure 5.1 illustrates a simple control-flow graph where a type test on the variable n

branches to two blocks A and B. Given that n is always an int32 at execution time, we

can lazily generate versions of blocks A and C, but we do not need to generate code for

block B. As such, we end up generating less code than we would have with eager code

1. A stub is a small piece of machine code which serves as a placeholder. Stubs are used to speculate
that specific branches will not be executed. When a stub is executed, this indicates that the speculation has
failed, which triggers some action on the part of the compiler. Typically, the execution of a stub results in
new machine code being generated, which then takes the place of the stub.

60

A

is_int32(n)

B

C

n is not int32n is int32

n is int32

stub

Figure 5.1: With lazy BBV, unexecuted block versions are never generated.

generation.

Lazy BBV does not compile whole methods. Instead, it generates code incremen-

tally, one basic block at a time. This is accomplished with the use of stubs. That is, the

compiler generates code for a basic block, and keeps generating code for as long as it

can determine the direction of conditional branches at code generation time. When it

encounters a branch for which it cannot determine which direction will be taken, stubs

are generated, and execution is resumed.

Machine code for block versions is appended to an executable memory area in a

linear manner, and stubs are generated in a separate executable region. Branches to

stubs are dynamically rewritten when stubs are executed. In this way, machine code of

good quality is generated. Blocks which execute in sequence usually follow each other

in the machine code without unnecessary jump instructions being introduced.

5.3 Results

Our initial investigation into lazy BBV shows that this strategy effectively eliminates

the code bloat problem associated with eager BBV. The mean code size increase is just

0.19% with lazy versioning, compared to 69% with the eager approach. Lazy versioning

does not suffer from a code bloat problem because it only needs to generate code for

type combinations that actually occur at execution time.

61

An added benefit of eliminating the code bloat problem is that we do not waste our

versioning budget on unnecessary versions. Instead, we can spend this budget on block

versions that actually occur. As a result, we were able to eliminate 71% of dynamic type

tests on average, instead of 64% with eager BBV.

Furthermore, the lazy BBV approach can help in generating higher quality machine

code in a third way. Because block versions are generated lazily, they tend to be produced

in the order that they are first executed. This strategy is an effective way, in practice, of

ordering executable code in memory. It tends to generate linear sequences of block

versions that directly fall through to one another without branching.

With lazy versioning, we were able to obtain average speedups of 21% over a base-

line without BBV, demonstrating that the technique does yield performance improve-

ments in practice. The article which follows was submitted and published at the ECOOP

2015 conference [7].

62

Simple and Effective Type Check Removal
through Lazy Basic Block Versioning
Maxime Chevalier-Boisvert1 and Marc Feeley2

1 DIRO, Université de Montréal
Montréal, QC, Canada

2 DIRO, Université de Montréal
Montréal, QC, Canada

Abstract
Dynamically typed programming languages such as JavaScript and Python defer type check-

ing to run time. In order to maximize performance, dynamic language VM implementations must
attempt to eliminate redundant dynamic type checks. However, type inference analyses are often
costly and involve tradeoffs between compilation time and resulting precision. This has lead to
the creation of increasingly complex multi-tiered VM architectures.

This paper introduces lazy basic block versioning, a simple JIT compilation technique which
effectively removes redundant type checks from critical code paths. This novel approach lazily
generates type-specialized versions of basic blocks on the fly while propagating context-dependent
type information. This does not require the use of costly program analyses, is not restricted by
the precision limitations of traditional type analyses and avoids the implementation complexity
of speculative optimization techniques.

We have implemented intraprocedural lazy basic block versioning in a JavaScript JIT compiler.
This approach is compared with a classical flow-based type analysis. Lazy basic block versioning
performs as well or better on all benchmarks. On average, 71% of type tests are eliminated,
yielding speedups of up to 50%. We also show that our implementation generates more efficient
machine code than TraceMonkey, a tracing JIT compiler for JavaScript, on several benchmarks.
The combination of implementation simplicity, low algorithmic complexity and good run time
performance makes basic block versioning attractive for baseline JIT compilers.

1998 ACM Subject Classification D.3.4 – compilers, optimization, code generation, run-time
environments

Keywords and phrases Just-In-Time Compilation, Dynamic Optimization, Type Checking, Code
Generation, JavaScript

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.999

1 Introduction

A central feature of dynamic programming languages is that they defer type checking to run
time. In order to maximize performance, efficient implementations of dynamic languages
seek to type-specialize code so as to eliminate dynamic type checks when possible. Doing so
requires proving that these type checks are unnecessary and generating type-specialized code.

Traditionally, the main approach for eliminating type checks has been to use type inference
analyses. This is problematic for modern dynamic languages such as JavaScript and Python
for three main reasons. The first is that these languages are generally poorly amenable to
whole-program type analyses. Constructs such as eval and dynamic loading of modules
can destroy previously valid type information. The second is that these analyses can be

© Maxime Chevalier-Boisvert and Marc Feeley;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 999–1022

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

1000 Simple and Effective Type Check Removal through Lazy Basic Block Versioning

expensive in terms of computation time and memory usage, making them unsuitable for JIT
compilers, particularly baseline compilers. To reduce analysis cost, it is often necessary to
sacrifice precision. A last issue is that some type checks simply cannot be eliminated through
analysis alone, without code transformations.

Because dynamic programming languages are generally poorly amenable to type inference,
and whole-program analyses are often too expensive for JIT compilation purposes, state of
the art JavaScript VMs such as SpiderMonkey, V8 and JavaScriptCore rely on increasingly
complex multi-tiered architectures integrating interpreters and multiple JIT compilers with
different optimization capabilities (baseline compilers to aggressively optimizing compilers).
At the highest optimization levels, modern JIT compilers typically make use of type feedback,
type inference analysis and also speculative optimization and deoptimization [16] with
On-Stack Replacement (OSR).

We introduce a simple approach to JIT compilation that generates efficient type-specialized
code without the use of costly type inference analyses or type profiling. The approach, which
we call lazy basic block versioning, lazily clones and specializes basic blocks on the fly in a
way that allows the compiler to accumulate type information while machine code is generated,
without a separate type analysis pass. The accumulated information allows the removal of
redundant type tests, particularly in performance-critical paths.

Lazy basic block versioning lets the execution of the program itself drive the generation
of type-specialized code, and is able to avoid some of the precision limitations of traditional,
conservative type analyses as well as avoiding the implementation complexity of speculative
optimization techniques.

This paper relates our experience implementing lazy basic block versioning and reports
on its effectiveness as a code generation technique. The rest of the paper is organized as
follows. Section 2 explains the basic block versioning approach, comparing it with the
related approaches of static type analysis and trace compilation. Section 3 describes an
implementation within Higgs, an experimental JIT compiler for JavaScript. Section 4
presents an evaluation of the performance of this implementation. Related work is presented
in Section 5.

2 Basic Block Versioning

In the basic block versioning approach, the code generator maintains a typing context (or
type map) which indicates what is known of the type of each live local variable at the current
program point. All local variables start out with the unknown type at function entry points.
While generating code, the code generator updates the typing context by inferring the result
type of data operations it encounters. Conditional branch instructions corresponding to type
tests create two new typing contexts for outgoing branch edges. In each context, a type
is assigned to the variable being tested (either the type tested or unknown). When a type
test branch instruction is encountered and the type of the argument is known, the branch
direction can be determined at code generation time and the type test eliminated.

The compiler may generate code for multiple instances of a given basic block; one version
for each typing context encountered on a branch to that basic block. This allows specializing
the basic block and its successors by taking the types of live variables into account. While
basic block versioning works at the level of individual basic blocks, the propagation of typing
contexts to successor blocks allows type-specializing entire control flow graphs.

An important difference between this approach and traditional type analyses is that basic
block versioning does not compute a fixed point on types to be inferred. Variables which

M. Chevalier-Boisvert and M. Feeley 1001

may have multiple different types at the same program point are handled more precisely
with basic block versioning due to the duplication of code. In a traditional type analysis,
the union of several possible types would be assigned to such variables, causing the analysis
to be conservative. With basic block versioning, distinct basic block versions, and thus
distinct code paths, will be created for each type previously encountered, allowing a precise
context-dependent tracking of types.

With basic block versioning, loops in the control flow graph need not be handled specially.
A first version of the loop header is generated for a typing context C1. At the point(s) where
control flow branches back to the loop header, a new version of the loop may be generated
if the typing context C2 is different from C1. Given that the number of possible contexts
is finite, a fixed point is eventually reached, that is, the typing context at branches to the
loop header will eventually match one of C1, C2, . . . , CN . The number of versions actually
generated is expected to be low because the type of most variables remains stable for the
duration of a function.

There is a risk of a combinatorial explosion when multiple versions of basic blocks are
created eagerly. Consider the simple statement x=a+b+c+d. If the types of a, b, c and d
are unknown, and those variables are live after the assignment, and there are two possible
numerical types (int and float), there could be up to 16 versions of the basic block
containing the assignment to x, one version for each set of type assignments to the variables
being summed. In general, if basic block versioning is performed in an eager fashion and
there are t possible types of values and a function has v variables, then there can be up
to tv versions of some basic blocks in that function. However, the logic of a program puts
constraints on possible type combinations. In practice, not all the combinations of types are
observed during an execution of a program.

It is often the case that variables are monomorphic in type (i.e. they always contain the
same type of value). We can take advantage of this by lazily creating new block versions
on demand. Versions for a particular context are only generated when that context is
encountered during execution. Lazy basic block versioning doesn’t completely eliminate the
possibility of a combinatorial explosion in pathological cases, but this can be prevented by
placing a hard limit on the number of versions generated for any given block. Some increase
in code size is to be expected, but no more than a constant factor. Mueller and Whalley
have shown [24] that specializing code through replication, while increasing the static size of
machine code, can reduce the dynamic count of executed instructions and result in better
cache usage.

Traditional type analyses often cannot infer a type for a variable, either because there is
insufficient semantic information in the source program, or because the analysis is limited
in its capabilities. For example, with an intraprocedural type analysis of JavaScript, no
type information is known about function parameters. Without transforming the program,
many variable types cannot be recovered by analysis alone. Moreover, the unknown type
may propagate through primitive operations and effectively poison the results of such type
analyses.

As will be demonstrated in Section 4, a key advantage of basic block versioning over
program analyses lies in its ability to recover unknown types. The versioning approach is
able to exploit type tests that are implicitly part of the language semantics to gain type
information, and then generate new block versions where the additional type information
remains known. Basic block versioning automatically unrolls some of the first iterations of
loops in such a way that type tests are hoisted out of loop bodies. For example, if variables
of unknown type are used unconditionally in a loop, their type will be tested only in the

ECOOP’15

1002 Simple and Effective Type Check Removal through Lazy Basic Block Versioning

first iteration of the loop. The type information gained will allow further iterations to avoid
redundant type tests.

Lazy basic block versioning bears some similarity to trace compilation [5] in the use of
code duplication and type specialization to eliminate type tests [13]. Trace compilation
typically relies on an interpreter to detect hot loops and record traces. It is also most
effective on loop-heavy code. In contrast, lazy basic block versioning can handle any code
structure just as effectively. It avoids the dual language implementation (interpreter and
trace compiler) and requires no special infrastructure for profiling or recording traces.

The relative simplicity of tracking typing contexts and previously generated basic block
versions means that the compiler avoids algorithms of high computational complexity. With
a hard limit on the number of block versions, code generation time and code size scale
linearly with the size of the input program. Lazy basic block versioning requires no external
optimization or analysis passes to generate type-specialized code. This makes the approach
interesting for use in baseline JIT compilers.

3 Implementation in Higgs

We have implemented lazy basic block versioning inside a JavaScript virtual machine called
Higgs. This virtual machine comprises a JIT compiler targeted at x86-64 POSIX platforms.
The current implementation of Higgs supports most of the ECMAScript 5 specification [18],
with the exception of the with statement and the limitation that eval can only access
global variables, not locals. Its runtime and standard libraries are self-hosted, written in an
extended dialect of ECMAScript with low-level primitives. These low-level primitives are
special instructions which allow expressing type tests as well as integer and floating point
machine instructions in the source language.

In Higgs, functions are parsed into an abstract syntax tree and lazily compiled to a
Static Single Assignment (SSA) Intermediate Representation (IR) when they are first called.
Inlining is performed at this time according to simple fixed heuristic rules. Specific JavaScript
runtime functions including arithmetic, comparison and object property access primitives
are always inlined. This inlining allows exposing type tests and typed low-level operations
contained inside primitives to the backend, which implements basic block versioning.

A basic block version corresponds to a basic block and an associated context containing
type information about live values at the start of the block. Machine code generation
always begins with the function’s entry block and a default entry context being queued for
compilation. Typing contexts in Higgs are implemented as sets of pairs associating live SSA
values to unique type tags (see Section 3.2). Values for which no type information is known
do not appear in the set. As each instruction in a block is compiled, information is both
retrieved from and inserted into the current context. Information retrieved may be used to
optimize the compilation of the current instruction (e.g. eliminate type tests). Instructions
will also write their own output type in the context if known.

To guard against pathological cases where an unreasonably large number of versions
would be generated, we have added one tunable parameter, maxvers, which specifies the
maximum number of specialized versions that can be generated for any given basic block.
Before the limit for a given block is reached, requests for new versions matching an incoming
context will either find an existing exact match for the context, or compile a new version
matching the incoming context exactly. Once the limit is reached for a particular block,
requests for new versions of this block will first try to find an inexact but compatible match
for the incoming context. An existing version is compatible with the incoming context if the

M. Chevalier-Boisvert and M. Feeley 1003

/**
Context compatibility test function :
- Perfectly matching contexts produce score 0
- Imperfect matches produce a score > 0
- Incompatible matches produce Infinity
*/
Number contextComp (Context predCtx , Context succCtx)
{

Number score = 0;

// For each value live in the successor
foreach (value in succCtx)
{

auto predType = predCtx . getType (value);
auto succType = succCtx . getType (value);

// If the successor has no known type ,
// we would lose a known type
if (predType != UNKNOWN &&

succType == UNKNOWN)
score += 1

// If the types do not match ,
// contexts are incompatible
else if (predType != succType)

return Infinity ;
}

return score;
}

Figure 1 Context compatibility test function

value types assumed by the existing version are a subset of those specified in the incoming
context.

The context compatibility test is shown in Figure 1. A context containing less constraining
types than the incoming context is compatible, but one that has more constraining types than
the incoming context is not. Essentially, this allows for the loss of type information when
transitioning along control flow edges. If the version limit was reached and no compatible
match is found for a given block, a fully generic version of the block that assigns the unknown
type to all live variables will be generated. This generic version is compatible with all possible
incoming contexts. When the maxvers parameter is set to zero, basic block versioning is
disabled, and only one generic version of each basic block may be generated.

3.1 Lazy Code Generation
Limiting the number of versions generated by eager basic block versioning to avoid com-
binatorial code growth is a difficult problem. Simply imposing a hard version limit is not
a satisfactory solution because it is nontrivial to determine ahead of time which typing
contexts are more probable than others, and which may not occur at all. This is particularly
problematic in a JIT compiler, since compiling versions for type combinations that will not
occur at run time translates into wasted compilation time, code bloat and poor usage of
the instruction cache. There is also the issue of ordering machine code in memory so as to
minimize the number of branches taken.

Clearly, basic block versioning ought to be guided by run time types, but gathering
profiling data using traditional means could be expensive. Furthermore, the resulting data

ECOOP’15

1004 Simple and Effective Type Check Removal through Lazy Basic Block Versioning

may be large and complex to analyze. Instead, Higgs delays the generation of block versions
and lets the run time behavior of programs drive this process. The execution of conditional
branches triggers the generation of new block versions. This is particularly useful since all
type tests are conditional branches. Versions are generated according to the types that
actually occur at run time. This lazy code generation approach has four key benefits:

1. The order in which versions for different type combinations are generated tends to
approximate the frequency of occurrence of the said types. This is particularly helpful in
the presence of a block version limit.

2. It tends to produce efficient, cache-friendly linear orderings of compiled blocks in memory,
as versions are generated in the order they are first executed.

3. Neither memory nor time are wasted compiling block versions for type combinations that
never occur at run time. Type combinations that do not occur are never accounted for.

4. Unexecuted blocks are never compiled. Exception handling code is not generated for
programs which do not throw exceptions. Floating point code is not generated for
programs which do not make use of floating point values.

The Higgs backend lazily compiles versions of individual SSA basic blocks into x86-64
machine code as they are first executed. Higgs does not compile whole functions at once.
Instead, the JIT compilation model employed by Higgs interleaves execution and compilation
of basic blocks. The last instruction of a block, which must be a branch instruction, determines
which block will be compiled next. If the branch is unconditional, or if its direction can
be determined at compilation time, no branch instruction is generated, and the successor
version the branch leads to is immediately compiled (unless already compiled, in which case
a direct jump is written instead).

When a conditional branch whose direction cannot be determined at compilation time is
encountered, a pair of out-of-line stubs are generated for the two possible outcomes of the
branch, and execution resumes. Stubs, when executed, call back the compiler requesting
compilation of the corresponding destination basic block with the typing context at the
branch. The branch is then overwritten to fall through or jump to the generated basic block
version. This way, the compilation of a particular basic block version is delayed until it is
required for execution.

3.2 Type Tags and Runtime Primitives
Higgs segregates values into a few categories based on type tags [15]. These categories are:
32-bit integers (int32), 64-bit floating point values (float64), miscellaneous JavaScript
constants (const), and four kinds of garbage-collected pointers inside the heap (string,
object, array, closure). These type tags form a simple, first-degree notion of types that is
used to drive the basic block versioning approach.

We chose this coarse-grained type classification to investigate the effectiveness and
potential of basic block versioning. Higgs implements JavaScript operators as runtime library
functions written in an extended dialect of JavaScript, and most of these functions use type
tags to do type dispatching. As such, eliminating this first level of type tests as well as
boxing and unboxing overhead, is crucial to improving the performance of the system as a
whole.

Figure 2 illustrates the implementation of the + operator as an example. As can be
seen, this function makes extensive use of low-level type test primitives such as is_i32 and
is_f64 to implement dynamic dispatch based on the type tags of the input arguments. Most

M. Chevalier-Boisvert and M. Feeley 1005

function add(x, y) {
if (is_i32 (x)) { // If x is integer

if (is_i32 (y)) {
if (var r = add_i32_ovf (x, y))

return r;
else // Handle the overflow case

return add_f64 (i32_to_f64 (x),
i32_to_f64 (y));

} else if (is_f64 (y))
return add_f64 (i32_to_f64 (x), y);

} else if (is_f64 (x)) { // If x is fp
if (is_i32 (y))

return add_f64 (x, i32_to_f64 (y));
else if (is_f64 (y))

return add_f64 (x, y);
}

// Eval args as strings and concat them
return strcat (toString (x), toString (y));

}

Figure 2 Implementation of the + operator

other arithmetic, comparison and property access primitives implement a similar dispatch
mechanism.

Note that while according to the ES5 specification all JavaScript numbers are IEEE
double-precision floating point values, high-performance JavaScript VMs typically attempt
to represent small integer values using machine integers so as to improve performance by
using lower latency integer arithmetic instructions. We have made the same design choice for
Higgs. Consequently, JavaScript numbers are represented using tagged int32 or float64
values. Arithmetic operations on int32 values may yield an int32 or float64 result, but
arithmetic operations on float64 values always yield an float64 result.

3.3 Flow-based Representation Analysis
To provide a point of comparison and contrast the capabilities of basic block versioning with
that of more traditional type analysis approaches, we have implemented a forward flow-based
representation analysis that computes a fixed point on the types of SSA values. The analysis
is an adaptation of Wegbreit’s algorithm as described in [31]. It is an intraprocedural constant
propagation analysis that propagates the types of SSA values in a flow-sensitive manner.

The representation analysis uses sets of possible type tags as a type representation. It is
able to gain information from typed primitives (e.g. add_f64 produces float64 values) as
well as type tests and forward this information along branches. The analysis is also able to
deduce, in some cases, that specific branches will not be executed and ignore the effects of
code that was determined dead. The type tags are the same as those used by basic block
versioning, with the difference that basic block versioning only propagates unique known
types and not type sets (e.g. int32 ∪ float64). This means that basic block versioning
can only propagate positive information gained from type tests whereas the analysis can
propagate both positive and negative information (e.g. a is not int32).

We have chosen to give the type analysis a richer type representation than that of basic
block versioning because several common arithmetic primitives can produce overflows that
cannot be statically predicted. This means that most arithmetic operations can produce
either int32 or float64 types. If the type analysis could not represent this type set, it would

ECOOP’15

1006 Simple and Effective Type Check Removal through Lazy Basic Block Versioning

be forced to infer that the output type of most arithmetic operations is of unknown type.
This would immediately put the type analysis at an enormous disadvantage when compared
to basic block versioning because basic block versioning is not affected by overflows that do
not occur at run time.

3.4 Concrete Example

function sum(n) {
for (var i=0, s=0; i<n; i++)

s += i;
return s;

}

Figure 3 The sum function.

s=0 i=0
 A

…

yes
no

 B
is_i32(i)

yes
no

 C
is_i32(n)

no
yes

 D
lt_i32(i,n)

…

return s

 E

…

yes
no

 F
is_i32(s)

yes
no

 G
is_i32(i)

…

…

yes
no

 J
is_i32(i)

s=add_i32(s,i)

 H

no
yes

 I
overflow?

…

i=add_i32(i,1)

 K

no
yes

 L
overflow?

…

Figure 4 Control flow graph of sum function (unexecuted parts omitted).

To illustrate the lazy basic block versioning approach, we will explain the compilation of
the sum function given in Figure 3. Specifically, we trace the execution of the function call
sum(500). This only requires 32-bit integer computations because no overflows occur for this
value of n. Figure 4 shows the parts of the control flow graph of the function executed during
this call. The complete graph is larger and includes code to handle floating point values and
other types. Unexecuted parts of the control flow graph are shown as ellipses (. . .).

Before versioning, there are 5 type tests on i and n executed as part of the loop. Higgs
compiles the code for the sum function incrementally, type-specializing and eliminating type
tests as compilation proceeds. The compiled and specialized code is equivalent to the control
flow graph shown in Figure 5. Multiple blocks have been specialized based on the knowledge
that i, s and n are of the int32 type. Only one type test is left, in block C1, and this type
test has been hoisted out of the loop. It is executed only once per call to sum.

The incremental compilation process occurs in six steps and is illustrated in Figure 6.
When first entering the sum function, a version of the entry block A is compiled, generating

M. Chevalier-Boisvert and M. Feeley 1007

yes
…

s=0 i=0
A1

B1

yes
no

C1
is_i32(n)

no
yes

D1
lt_i32(i,n)

…

return s

E1

F1 G1

J1

s=add_i32(s,i)

H1

no
yes

I1
overflow?

…

i=add_i32(i,1)

K1 L1 B2 C2

no
overflow?

Figure 5 Control flow graph of sum function transformed by basic block versioning.

Figure 6 Machine code at different steps of code compilation

ECOOP’15

1008 Simple and Effective Type Check Removal through Lazy Basic Block Versioning

A1. Variables s and i are initialized to int32 and this is noted in the current typing context.
Then, block B is compiled down to nothing because i is known to be int32 in the current
context. In C1, generated from block C, the type test on n needs to emit machine code
because the type of n is unknown in the current context and so must be tested. Therefore,
stubs stub_n_not_i32 and stub_D1 are generated and execution resumes at A1.

Because n contains an int32, execution flows to stub_D1, which calls back into the JIT
compiler. The branch instructions at the end of block C1 is rewritten so that a jump to a
stub is executed only if n is not int32. In future calls of sum where n is int32, the branch
will fall through to block D1. The generation of block D1 from D is handled similarly. Two
stubs (stub_F1 and stub_E1) are used to determine the direction of the less-than comparison
branch, which is unknown at compilation time. Execution then resumes at D1 and flows
to stub_F1. This time, the JIT compiler inverts the direction of the branches at the end
of block D1 so that the fall through will be block F1. Then blocks F1, G1, H1, and I1 are
generated and execution resumes at F1.

The code is incrementally generated in this fashion by successively executing stub_J1,
stub_B2, and stub_E1. After the execution of stub_B2, the emitted code executes until
the end of the loop. In the last loop iteration, the less-than comparison in D1 fails. This
triggers compilation of the loop exit block E1, which is conveniently placed outside of the
loop body. We note that the detailed sequence of instructions needed to return from sum is
more complex than what is shown (to support JavaScript’s variable arity function calls).

The right part of Figure 6 shows the generated code after the execution of sum(500)
has completed. Type tests in blocks F1, G1 and J1 were eliminated because i, s and n are
known to be int32 at those points. The jump back to the loop header in L1 generated new
versions of blocks B and C where i, s and n are known to be int32. Hence, only the first
loop iteration performs a type test.

4 Evaluation

4.1 Experimental Setup

To assess the effectiveness of basic block versioning, we have tested it on a total of 26 classic
benchmarks from the SunSpider and Google V8 suites. One benchmark from the SunSpider
suite and one from the V8 suite were not included in our tests because Higgs does not
yet implement the required features. Benchmarks making use of regular expressions were
discarded because unlike V8 and TraceMonkey, Higgs does not implement JIT compilation
of regular expressions, and neither does Truffle JS [33, 32].

Since Higgs interleaves compilation and execution and which parts of a program are
eventually compiled is entirely dependent on run time behavior, we have measured approx-
imate compilation times using a microsecond counter which is started and stopped when
compilation begins and ends. The total times accumulated are averaged across 10 runs to
give a final compilation time figure.

To measure execution time separately from compilation time in a manner compatible
with V8, TraceMonkey, Truffle JS and Higgs, we have modified benchmarks so that they
could be run in a loop. A number of warmup iterations are first performed so as to trigger
JIT compilation and optimization of code before timing runs take place.

The number of warmup and timing iterations were scaled so that short-running benchmarks
would execute for at least 1000ms in total during both warmup and timing. Unless otherwise
specified, all benchmarks were run for at least 10 warmup iterations and 10 timing iterations.

M. Chevalier-Boisvert and M. Feeley 1009

V8 version 3.29.66, TraceMonkey version 1.8.5+ and Truffle JS v0.5 were used for
performance comparisons. Tests were executed on a system equipped with an Intel Core
i7-4771 quad-core CPU with 8MB L3 cache and 16GB of RAM running Ubuntu Linux 12.04.
Dynamic CPU frequency scaling was disabled for our experiments.

4.2 Dynamic Type Tests
bi

ts
-in

-b
yt

e

ns
ie

ve

fa
nn

ku
ch

ns
ie

ve
-b

its

3b
its

-b
yt

e

3d
-c

ub
e

v8
-c

ry
pt

o

na
vi

er
-s

to
ke

s

fa
st

a

cr
yp

to
-m

d5

cr
yp

to
-s

ha
1

nb
od

y

sp
ec

tra
l-n

or
m

co
rd

ic

3d
-m

or
ph

3d
-r

ay
tra

ce

pa
rt

ia
l-s

um
s

ba
se

64

bi
na

ry
-tr

ee
s

ric
ha

rd
s

re
cu

rs
iv

e

sp
la

y

v8
-r

ay
tra

ce

de
lta

bl
ue

ea
rle

y-
bo

ye
r

bi
tw

is
e-

an
d

0%

20%

40%

60%

80%

100%
analysis maxvers=1 maxvers=5 maxvers=∞

Figure 7 Dynamic counts of type tests executed using the representation analysis and lazy basic
block versioning with various version limits (relative to baseline)

Figure 7 shows the dynamic counts of type tests for the representation analysis and for
lazy basic block versioning with various block version limits. These counts are relative to a
baseline which has the version limit set to 0, and thus only generates a generic version of each
basic block. As can be seen from the counts, the analysis produces a reduction in the number
of dynamically executed type tests over the unoptimized baseline on most benchmarks. The
basic block versioning approach does at least as well as the analysis, and almost always
significantly better. Surprisingly, even with a version cap as low as 1 version per basic block,
the versioning approach is often competitive with the representation analysis. This is likely
because most value types are monomorphic.

Raising the version cap reduces the number of type tests performed with the versioning
approach in an asymptotic manner as we get closer to the limit of what is achievable with our
implementation. The versioning approach does quite well on the bits-in-byte benchmark.
This benchmark (see Figure 8) is an ideal use case for our versioning approach. It is a tight
loop performing bitwise and arithmetic operations on integers which are all stored in local
variables. The versioning approach performs noticeably better than the analysis on this test
because it is able to test the type of the function parameter b, which is initially unknown
when entering bitsinbyte only once per function call and propagate this type thereafter.
The analysis on its own cannot achieve this, and so must repeat the test for each operation
on b. In contrast, the bitwise-and benchmark operates exclusively on global variables, for
which our system cannot extract types, and so neither the type analysis nor the versioning
approach show any improvement over baseline for this benchmark.

A breakdown of relative type test counts by kind, averaged across all benchmarks (using

ECOOP’15

1010 Simple and Effective Type Check Removal through Lazy Basic Block Versioning

function bitsinbyte (b) {
var m = 1, c = 0;
while (m < 0x100) {

if(b & m) c++;
m <<= 1;

}
return c;

}

function TimeFunc (func) {
var x, y, t;
for(var x=0; x <350; x++)

for(var y=0; y <256; y++) func(y);
}

TimeFunc (bitsinbyte);

Figure 8 SunSpider bits-in-byte benchmark

is int32 is float64 is const is string is object is array is closure total
0%

20%

40%

60%

80%

100%
analysis maxvers=1 maxvers=5 maxvers=∞

Figure 9 Type test counts by kind of type test (relative to baseline)

the geometric mean) is shown in Figure 9. We see that the versioning approach is able to
perform as well or better than the representation analysis across each kind of type test. The
is_closure category shows the least improvement. This is because functions are typically
globals or methods, which basic block versioning cannot yet get type information about. We
note that versioning is much more effective than the analysis when it comes to eliminating
is_i32 type tests. This is because integer and floating point types often get intermixed,
leading to cases where the analysis cannot eliminate such tests. The versioning approach has
the advantage that it can replicate and detangle integer and floating point code paths. A
limit of 5 versions per block eliminates 71% of total type tests, compared to 16% for the
analysis.

4.3 Code Size Growth
Figure 10 shows the relative proportion of blocks for which different counts of versions were
generated across all benchmarks. As one might expect, the relative proportion of blocks
tends to steadily decrease as the number of versions is increased. Most basic blocks have
only one version, 5.2% have two, and just 0.16% of blocks have 5 versions or more. Hence,
blocks with a large number of versions are a rare occurrence.

M. Chevalier-Boisvert and M. Feeley 1011

1 2 3 4 ≥ 5
0%

20%

40%

60%

80%

100%

Figure 10 Relative occurrence of block version counts

The maximum number of versions ever produced for a given block across our benchmarks
is 11. This occurs in the v8-raytrace benchmark. The function generating the most block
versions in this benchmark is rayTrace. This function is at the core of the ray tracing
algorithm. It contains a loop with several live variables used during iteration. Some of these
variables can be either null or an object reference. There are also versions generated where
basic block versioning cannot determine a type for some variables.

ea
rle

y-
bo

ye
r

na
vi

er
-s

to
ke

s

co
rd

ic

nb
od

y

ns
ie

ve
-b

its

pa
rt

ia
l-s

um
s

3b
its

-b
yt

e

ns
ie

ve

bi
ts

-in
-b

yt
e

re
cu

rs
iv

e

bi
tw

is
e-

an
d

bi
na

ry
-tr

ee
s

3d
-m

or
ph

fa
st

a

ba
se

64

3d
-c

ub
e

sp
ec

tra
l-n

or
m

ric
ha

rd
s

fa
nn

ku
ch

sp
la

y

v8
-c

ry
pt

o

3d
-r

ay
tra

ce

cr
yp

to
-s

ha
1

de
lta

bl
ue

cr
yp

to
-m

d5

v8
-r

ay
tra

ce
0%

20%

40%

60%

80%

100%

120%
analysis maxvers=1 maxvers=5 maxvers=∞

Figure 11 Code size for various block version limits (relative to baseline)

The effects of basic block versioning on the total generated code size are shown in Figure
11. It is interesting to note that the representation analysis almost always results in a slight
reduction in code size. This is because the analysis allows the elimination of type tests and
the generation of more optimized code, which is usually smaller. On the other hand, basic
block versioning can generate multiple versions of basic blocks, which often (but not always)
results in more generated code. The volume of generated code does not increase linearly
with the block version limit. Rather, it tapers off as a limited number of versions tends to be
generated for each block. A limit of 5 versions per block results in a mean code size increase
of 0.19%. With no limit at all on the number of versions, the code size increase does not
change much, with a mean of 0.25% and a maximum increase of 15% across all benchmarks.
On the benchmarks we have tested, there is no pathological code size explosion, and the

ECOOP’15

1012 Simple and Effective Type Check Removal through Lazy Basic Block Versioning

block version limit is not strictly necessary.

4.4 Execution Time

bi
ts

-in
-b

yt
e

ns
ie

ve

de
lta

bl
ue

ns
ie

ve
-b

its

v8
-c

ry
pt

o

3b
its

-b
yt

e

na
vi

er
-s

to
ke

s

co
rd

ic

v8
-r

ay
tra

ce

3d
-c

ub
e

fa
st

a

fa
nn

ku
ch

cr
yp

to
-m

d5

nb
od

y

cr
yp

to
-s

ha
1

3d
-m

or
ph

ba
se

64

sp
ec

tra
l-n

or
m

3d
-r

ay
tra

ce

bi
na

ry
-tr

ee
s

ric
ha

rd
s

re
cu

rs
iv

e

sp
la

y

pa
rt

ia
l-s

um
s

ea
rle

y-
bo

ye
r

bi
tw

is
e-

an
d

0%

20%

40%

60%

80%

100%

120%
analysis maxvers=1 maxvers=5 maxvers=∞

Figure 12 Execution time for various block version limits (relative to baseline)

Figure 12 shows the execution times relative to baseline. Because our type analysis is
not optimized for speed and incurs a significant compilation time penalty, we have excluded
compilation time and measured only time spent executing compiled machine code. A limit of
5 versions per block produces on average a 21% reduction in execution time, and speedups
of up to 50%, while the type analysis yields a 4% average speedup.

In most cases, basic block versioning produces a notable reduction in relative execution
time that compares favorably with the static analysis. The intraprocedural type analysis
does not eliminate enough type tests to be effective in improving execution times. We believe
that it should be possible to significantly improve upon the basic block versioning results
with method inlining and better optimized property accesses, which would expose more type
tests and more precise type information.

4.5 Eager Versioning
In order to evaluate the importance of lazyness in our basic block versioning approach,
we have tested an older version of Higgs which generates block versions eagerly. In this
configuration, whole methods are compiled at once, never producing stubs, and specialized
versions are generated for a given block until the block version limit is hit. The versions
are generated in no particular order. The performance obtained with eager generation of
block versions was found to be inferior on all metrics. When the version limit is set to 5, on
average, the eager approach eliminates about half as many type tests as the lazy approach,
the code size is 223% of baseline on average (see Figure 13), and the execution time is 5%
slower than baseline.

There are multiple issues with the eager generation of block versions. The most important
one is that without some form of lazyness, without code stubs, we must always produce
code for both sides of a conditional branch. In the case of eager basic block versioning, this

M. Chevalier-Boisvert and M. Feeley 1013

bi
tw

is
e-

an
d

3b
its

-b
yt

e

bi
ts

-in
-b

yt
e

re
cu

rs
iv

e

bi
na

ry
-tr

ee
s

ns
ie

ve
-b

its

ns
ie

ve

3d
-m

or
ph

ric
ha

rd
s

sp
ec

tra
l-n

or
m

cr
yp

to
-m

d5

ea
rle

y-
bo

ye
r

cr
yp

to
-s

ha
1

pa
rt

ia
l-s

um
s

sp
la

y

co
rd

ic

fa
st

a

fa
nn

ku
ch

de
lta

bl
ue

3d
-c

ub
e

ba
se

64

3d
-r

ay
tra

ce

v8
-r

ay
tra

ce

na
vi

er
-s

to
ke

s

nb
od

y

v8
-c

ry
pt

o

0%

500%

1000%

1500%

2000%

2500%

3000%

3500%

4000%

4500%
analysis maxvers=1 maxvers=5 maxvers=100

Figure 13 Code size with eager basic block versioning (relative to baseline)

means we generate code for both branches of a type test, even though in most cases only
one side of the branch is ever taken. We end up generating versions for a large number
of type combinations which cannot occur at run time, but which we have no heuristic to
discard at method compilation time. The number of possible type combinations increases
exponentially with the number of live variables, and so the block version limit is rapidly
reached. Since versions are generated in no particular order, the specialized versions eagerly
generated before the block version limit is hit are likely to be versions matching irrelevant
type combinations.

4.6 Compilation Time

ea
rle

y-
bo

ye
r

pa
rt

ia
l-s

um
s

co
rd

ic

bi
tw

is
e-

an
d

ric
ha

rd
s

ns
ie

ve

bi
na

ry
-tr

ee
s

bi
ts

-in
-b

yt
e

re
cu

rs
iv

e

3b
its

-b
yt

e

ns
ie

ve
-b

its

nb
od

y

3d
-m

or
ph

ba
se

64

sp
la

y

sp
ec

tra
l-n

or
m

fa
st

a

de
lta

bl
ue

3d
-r

ay
tra

ce

fa
nn

ku
ch

na
vi

er
-s

to
ke

s

3d
-c

ub
e

v8
-c

ry
pt

o

cr
yp

to
-s

ha
1

cr
yp

to
-m

d5

v8
-r

ay
tra

ce

0%

50%

100%

150%

200%

250%

300%
analysis maxvers=1 maxvers=5 maxvers=∞

Figure 14 Compilation time for various block version limits (relative to baseline)

The graph in Figure 14 shows a comparison of the total compilation time with the type

ECOOP’15

1014 Simple and Effective Type Check Removal through Lazy Basic Block Versioning

analysis and with different block version limits relative to baseline. The type analysis, as
implemented, is not particularly efficient because it passes around maps of SSA values to
type sets and iterates until a fixed point is reached. This is expensive and scales poorly
with program size. The analysis increases compilation time by over 100% in many cases.
In the worst case, on the earley-boyer benchmark, the analysis incurs a compilation time
slowdown of more than 100 times.

Basic block versioning does not increase compilation times by much. A limit of 5 versions
per block produces a compilation time decrease of 1.2% on average, and a 5.3% increase in
the worst case. It is interesting to note that in many cases, enabling basic block versioning
reduces compilation time by a small amount. This is because specializing code to eliminate
type checks often makes it smaller, and for some basic blocks, no machine code is generated
at all.

4.7 Comparison against the V8 Baseline Compiler

3d
-m

or
ph

bi
ts

-in
-b

yt
e

ns
ie

ve
-b

its

3b
its

-b
yt

e

sp
la

y

pa
rt

ia
l-s

um
s

ns
ie

ve

na
vi

er
-s

to
ke

s

nb
od

y

3d
-c

ub
e

v8
-c

ry
pt

o

cr
yp

to
-s

ha
1

sp
ec

tra
l-n

or
m

cr
yp

to
-m

d5

fa
nn

ku
ch

co
rd

ic

ba
se

64

3d
-r

ay
tra

ce

fa
st

a

bi
na

ry
-tr

ee
s

re
cu

rs
iv

e

ric
ha

rd
s

bi
tw

is
e-

an
d

de
lta

bl
ue

ea
rle

y-
bo

ye
r

v8
-r

ay
tra

ce

10%

100%

1000%

Figure 15 Speedup relative to V8 baseline (log scale, higher is better)

We have compared the execution time of the machine code generated by Higgs to that of
the V8 baseline compiler. The V8 baseline compiler is not to be confused with Crankshaft.
It is a low-overhead method-based JIT which, like Higgs, does not perform method inlining
and only performs basic optimizations and fast on the fly register allocation. It is meant to
compile code rapidly.

Figure 15 shows speedups of Higgs over V8 baseline. The scale is logarithmic, and higher
bars indicate better performance on the part of Higgs. As can be seen, Higgs delivers better
performance on more than half of the benchmarks. The three benchmarks on which V8
baseline does best are from the V8 suite, which the V8 baseline compiler was tailored to
perform best on. Higgs is able to deliver impressive speedups on a variety of benchmarks in
various areas of interest including floating point arithmetic, object-oriented data structures
and string manipulation.

M. Chevalier-Boisvert and M. Feeley 1015

bi
na

ry
-tr

ee
s

re
cu

rs
iv

e

fa
nn

ku
ch

ea
rle

y-
bo

ye
r

sp
la

y

bi
ts

-in
-b

yt
e

3d
-r

ay
tra

ce

na
vi

er
-s

to
ke

s

v8
-r

ay
tra

ce

ns
ie

ve

3d
-c

ub
e

ba
se

64

ns
ie

ve
-b

its

v8
-c

ry
pt

o

fa
st

a

co
rd

ic

sp
ec

tra
l-n

or
m

pa
rt

ia
l-s

um
s

de
lta

bl
ue

nb
od

y

cr
yp

to
-s

ha
1

3d
-m

or
ph

3b
its

-b
yt

e

ric
ha

rd
s

bi
tw

is
e-

an
d

cr
yp

to
-m

d5

10%

100%

1000%

Figure 16 Speedup relative to TraceMonkey (log scale, higher is better)

4.8 Comparison against TraceMonkey

The similarity of trace compilation and basic block versioning has prompted us to compare
Higgs to TraceMonkey, a tracing JIT compiler for JavaScript that was part of Mozilla’s
SpiderMonkey until mid 2011. It has the ability to eliminate type checks [13] based on
analysis of traces. Note that Higgs does not yet implement inlining of method calls whereas
TraceMonkey can inline them as part of tracing.

Figure 16 shows speedups of Higgs over TraceMonkey. The scale is again logarithmic,
with higher bars indicating better performance on the part of Higgs. TraceMonkey performs
better on many benchmarks. Unsurprisingly, the benchmarks TraceMonkey achieves the
best performance on tend to be benchmarks which include short and predictable loops. In
these, TraceMonkey is presumably able to inline all function calls which puts Higgs, without
inlining, at a significant performance disadvantage.

It is interesting that Higgs, even without inlining, does much better on some of the largest
benchmarks from our set. The two raytrace benchmarks, for example, make significant use
of object-oriented polymorphism and feature highly unpredictable conditional branches. The
earley-boyer benchmark is the largest of all and features complex control-flow. The splay
and binary-trees benchmarks apply recursive operations to tree data structures. We note
that Higgs performs much better than TraceMonkey on the recursive microbenchmark
which suggests TraceMonkey handles recursion poorly.

Higgs shines in benchmarks with complex, unpredictable control flow as well as recursive
computations. TraceMonkey is in no way the pinnacle of tracing JIT technology, but there
are clearly areas where basic block versioning unambiguously wins over this implementation
of trace compilation. Whereas tracing, in its simplest forms, is ideal for predictable loops,
basic block versioning is not biased for any kind of control-flow structures. We believe that
implementing inlining in Higgs would likely even the performance gap on the benchmarks
where Higgs currently performs worse.

ECOOP’15

1016 Simple and Effective Type Check Removal through Lazy Basic Block Versioning

bi
ts

-in
-b

yt
e

cr
yp

to
-s

ha
1

cr
yp

to
-m

d5

ric
ha

rd
s

sp
ec

tra
l-n

or
m

ba
se

64

de
lta

bl
ue

co
rd

ic

3d
-r

ay
tra

ce

v8
-c

ry
pt

o

3d
-c

ub
e

v8
-r

ay
tra

ce

ea
rle

y-
bo

ye
r

3d
-m

or
ph

sp
la

y

ns
ie

ve

fa
st

a

bi
na

ry
-tr

ee
s

pa
rt

ia
l-s

um
s

re
cu

rs
iv

e

ns
ie

ve
-b

its

fa
nn

ku
ch

bi
tw

is
e-

an
d

na
vi

er
-s

to
ke

s

nb
od

y

3b
its

-b
yt

e

1%

10%

100%

1000%

10000%
1 warmup itr 10 warmup itrs 100 warmup itrs

Figure 17 Speedup relative to Truffle JS (log scale, higher is better)

4.9 Comparison against Truffle JS
Figure 17 shows the relative speed of Higgs over Truffle JS on a logarithmic scale, with higher
bars indicating better performance on the part of Higgs. We have evaluated the performance
with 1, 10 and 100 warmup iterations. With 1 or 10 warmup iterations, Higgs outperforms
Truffle on the majority of benchmarks, with speedups of up to 30x in some cases.

With 100 warmup iterations, the picture changes, and Truffle outperforms Higgs on
most benchmarks. This seems to be because Truffle interprets code for a long time before
compiling and optimizing it. In contrast, Higgs only needs to compile and execute a given
code path once before it is optimized, with no warmup executions required.

Truffle has two main performance advantages over Higgs. The first is that after warmup,
Truffle is able to perform deep inlining, as illustrated by the v8-raytrace benchmark. The
second is that Truffle has sophisticated analyses which Higgs does not have. For instance,
the recorded time for the 3bits-byte microbenchmark is zero, suggesting that Truffle was
able to entirely eliminate the computation performed as its output is never used. Doing this
requires a side-effect analysis which can cope with the semantic complexities of JavaScript.

We note that even with 100 warmup iterations, and despite Truffle’s powerful optimization
capabilities, there remain several benchmarks where Higgs performs best, with speedups over
10x in some cases.

5 Related Work

The tracelet-based approach used by Facebook’s HipHop VM for PHP (HHVM) [1] bears much
similarity to our own. It is based on the JIT compilation of small code regions (tracelets)
which are single-entry multiple-exit basic blocks. Each tracelet is type-specialized based
on variable types observed at JIT compilation time. Guards are inserted at the entry of
tracelets to verify at run time that the types observed are still valid for all future executions.
High-level instructions in tracelets are specialized based on the guarded types. If these guards
fail, new versions of tracelets are compiled based on different type assumptions and chained
to the failing guards.

M. Chevalier-Boisvert and M. Feeley 1017

There are three important differences between the HHVM approach and basic block
versioning. The first is that BBV does not insert dynamic guards but instead exposes and
exploits the underlying type checks that are part of the definition of runtime primitives.
HHVM cannot do this as it uses monolithic high-level instructions to represent PHP primitives,
whereas the Higgs primitives are self-hosted and defined in an extended JavaScript dialect.
The second difference is that BBV propagates known types to successors and doesn’t usually
need to re-check the types of local variables. A third important difference is that HHVM
uses an interpreter as fallback when too many tracelet versions are generated. Higgs falls
back to generic basic block versions which do not make type assumptions but are still always
JIT compiled for better performance.

Trace compilation, originally introduced by the Dynamo [5] native code optimization
system, and later applied to JIT compilation in HotpathVM [14] aims to record long sequences
of instructions executed inside hot loops. Such linear sequences of instructions often make
optimization simpler. Type information can be accumulated along traces and used to
specialize code and remove type tests [13], overflow checks [28] or unnecessary allocations [7].
Basic block versioning resembles tracing in that context updating works on essentially linear
code fragments and code is optimized similarly to what may be done in a tracing JIT. Code
is also compiled lazily, as needed, without compiling whole functions at once.

The simplicity of basic block versioning is one of its main advantages. It does not require
external infrastructure such as an interpreter to execute code or record traces. Trace compiler
implementations must deal with corner cases that do not appear with basic block versioning.
With trace compilation, there is the potential for trace explosion if there is a large number
of control flow paths going through a loop. It is also not obvious how many times a loop
should be recorded or unrolled to maximize the elimination of type checks. This problem
is solved with basic block versioning since versioning is driven by type information. Trace
compilers must implement parameterizable policies and mechanisms to deal with recursion,
nested loops and potentially very long traces that do not fit in instruction caches.

Run time type feedback uses profiling to gather type information at execution time. This
information is then used to optimize dynamic dispatch [17]. There are similarities with basic
block versioning, which generates optimized code paths lazily based on types occurring at
run time. The two techniques are complementary. Basic block versioning could be made
more efficient by using type profiling to reorder sequences of type tests in a type dispatch.
Type feedback could be augmented by using basic block versioning to generate multiple
optimized code paths. The Truffle framework uses run time type feedback combined with
guards to type-specialize AST nodes at run time [33, 32].

There have been multiple efforts to devise type analyses for dynamic languages. The Rapid
Atomic Type Analysis (RATA) [22] is an intraprocedural flow-sensitive analysis based on
abstract interpretation that aims to assign unique types to each variable inside of a function.
Attempts have also been made to define formal semantics for a subset of dynamic languages
such as JavaScript [4], Ruby [12] and Python [3], sidestepping some of the complexity of
these languages and making them more amenable to traditional type inference techniques.
There are also flow-based interprocedural type analyses for JavaScript based on sophisticated
type lattices [19][20][21]. Such analyses are usable in the context of static code analysis,
but take too long to execute to be usable in VMs and do not deal with the complexities of
dynamic code loading.

More recently, work done by Brian Hackett et al. at Mozilla resulted in an interprocedural
hybrid type analysis for JavaScript suitable for use in production JIT compilers [16]. This
analysis represents an important step forward for dynamic languages, but as with other type

ECOOP’15

1018 Simple and Effective Type Check Removal through Lazy Basic Block Versioning

analyses, must conservatively assign one type to each value, making it vulnerable to imprecise
type information polluting analysis results. Basic block versioning can help improve on the
results of such an analysis by hoisting tests out of loops and generating multiple optimized
code paths where appropriate.

Basic block versioning bears some similarities to classic compiler optimizations such
as loop unrolling [11], loop peeling [29], and tail duplication, considering it achieves some
of the same results. Another parallel can be drawn with Partial Redundancy Elimination
(PRE) [23]; the versioning approach seeks to eliminate and hoist out of loops a specific
kind of redundant computation: dynamic type tests. Code replication has also been used to
improve the effectiveness of PRE [6].

Basic block versioning is also similar to the idea of node splitting [30]. This technique
is an analysis device designed to make control flow graphs reducible and more amenable
to analysis. The path splitting algorithm implemented in the SUIF compiler [27] aims at
improving reaching definition information by replicating control flow nodes in loops to
eliminate joins. Unlike basic block versioning, these algorithms cannot gain information from
type tests. The algorithms as presented are also specifically targeted at loops, while basic
block versioning makes no special distinction. Mueller and Whalley have developed effective
static analyses that use code replication to eliminate both unconditional and conditional
branches [24][25]. However, their approach is intended to optimize loops and operates on
a low-level intermediate representation that is not ideally suited to the elimination of type
tests in a high-level dynamic language.

Customization is a technique developed to optimize Self programs [8] that compiles
multiple copies of methods specialized on the receiver object type. Similarly, type-directed
cloning [26] clones methods based on argument types, producing more specialized code using
richer type information. The work of Chevalier-Boisvert et al. on Just-in-time specialization
for MATLAB [10] and similar work done for the MaJIC MATLAB compiler [2] tries to
capture argument types to dynamically compile optimized versions of whole functions. All
of these techniques are forms of type-driven code duplication aimed at extracting type
information. Basic block versioning operates at a lower level of granularity, allowing it to
find optimization opportunities inside of method bodies by duplicating code paths.

Basic block versioning also resembles the iterative type analysis and extended message
splitting techniques developed for Self by Craig Chambers and David Ungar [9]. This is a
combined static analysis and transformation that compiles multiple versions of loops and
duplicates control flow paths to eliminate type tests. The analysis works in an iterative
fashion, transforming the control flow graph of a function while performing a type analysis.
It integrates a mechanism to generate new versions of loops when needed, and a message
splitting algorithm to try and minimize type information lost through control flow merges.
One key disadvantage is that statically cloning code requires being conservative, generating
potentially more code than necessary, as it is impossible to statically determine exactly which
control flow paths will be taken at run time, and this must be overapproximated. Basic block
versioning is simpler to implement and generates code lazily, requiring less compilation time
and memory overhead, making it more suitable for integration into a baseline JIT compiler.

6 Limitations and Future Work

Since Higgs is a standalone JavaScript VM that is not integrated in a web browser, we have
tested it on out-of-browser benchmarks that are most relevant to using JavaScript in the

M. Chevalier-Boisvert and M. Feeley 1019

server-side space (like node.js1). We do not anticipate any issues with using basic block
versioning in a JavaScript VM integrated into a web browser, but we have not done the
integration required for such an experiment. Basic block versioning is suitable for optimizing
dynamic languages in general, not just JavaScript web applications in particular.

Several extensions to basic block versioning are possible. For instance, we have successfully
extended it to perform overflow check elimination on loop increments, but have kept this
feature disabled to simplify the presentation in this paper. Another interesting extension of
basic block versioning would be to propagate information about global variable types, object
identity and object property types. It may also be desirable to know the exact value of some
variables and object fields, particularly for values likely to remain constant.

The implementation of lazy basic block versioning evaluated in this paper only tracks
type information intraprocedurally. It would be beneficial to apply basic block versioning to
function calls so that type information can propagate from caller to callee. This would entail
having multiple specialized entry points for parameter types encountered at the call sites of
a function. Similarly, call continuation blocks (return points) could be versioned to allow
information about return value types to flow back to the caller.

7 Conclusion

We have described a simple approach to JIT compilation called lazy basic block versioning.
This technique combines code generation with type propagation and code duplication to
produce more optimized code through the accumulation of type information during code
generation. The versioning approach is able to perform optimizations such as automatic
hoisting of type tests and efficiently detangles code paths along which multiple numerical
types can occur. Our experiments show that in most cases, basic block versioning eliminates
significantly more dynamic type tests than is possible using a traditional flow-based type
analysis. It eliminates up to 71% of type tests on average with a limit of 5 versions per block,
compared to 16% for the analysis we have tested, and never performs worse than such an
analysis.

We have empirically demonstrated that although our implementation of basic block
versioning does increase code size in some cases, the resulting increase is quite small and
pathological code size explosions are unlikely to occur. In our experiments, a limit of 5
versions per block results in a mean code size increase of just 0.19%. Our experiments with
Higgs also indicate that lazy basic block versioning improves performance up to 50% with a
limit of 5 versions per block. Finally, we have shown that Higgs performs better than the V8
baseline compiler on most of our benchmarks, and better than TraceMonkey on several of
the more complex benchmarks in our set.

Basic block versioning is a simple and practical technique that requires little implementa-
tion effort and offers important advantages in JIT-compiled environments where type analysis
is often difficult and costly. Dynamic languages, which perform a large number of dynamic
type tests, stand to benefit the most.

Higgs is open source and the code used in preparing this publication is available on
GitHub2.

1 http://nodejs.org
2 https://github.com/higgsjs/Higgs/tree/ecoop2015

ECOOP’15

1020 Simple and Effective Type Check Removal through Lazy Basic Block Versioning

Acknowledgements

Special thanks go to Paul Khuong, Laurie Hendren, Erick Lavoie, Tommy Everett, Brett
Fraley and all those who have contributed to the development of Higgs.

This work was supported, in part, by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and Mozilla Corporation.

References
1 Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew Paroski, Brett

Simmers, Edwin Smith, and Owen Yamauchi. The hiphop virtual machine. In Proceedings
of the 2014 conference on Object Oriented Programming Systems Languages & Applications
(OOPSLA), pages 777–790. ACM New York, 2014.

2 George Almási and David Padua. MaJIC: compiling MATLAB for speed and respons-
iveness. In Proceedings of the 2002 conference on Programming Language Design and
Implementation (PLDI), pages 294–303. ACM New York, May 2002.

3 Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis. RPython: a
step towards reconciling dynamically and statically typed OO languages. In Proceedings of
the 2007 Dynamic Languages Symposium (DLS), pages 53–64. ACM New York, 2007.

4 Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards type inference
for JavaScript. In Proceedings of ECOOP 2005, pages 428–452. Springer Berlin Heidelberg,
2005.

5 V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimization
system. In Proceedings of the 2000 conference on Programming, pages 1–12. ACM New
York, 2000.

6 R. Bodík, R. Gupta, and M. L. Soffa. Complete removal of redundant expressions. In
Proceedings of the 1998 conference on Programming Language Design and Implementation
(PLDI), pages 1–14. ACM New York, 1998.

7 Carl Friedrich Bolz, Antonio Cuni, Maciej FijaBkowski, Michael Leuschel, Samuele Pedroni,
and Armin Rigo. Allocation removal by partial evaluation in a tracing jit. In Proceedings
of the 20th ACM SIGPLAN workshop on Partial Evaluation and Program Manipulation
(PEPM), pages 43–52. ACM New York, 2011.

8 Craig Chambers and David Ungar. Customization: optimizing compiler technology for Self,
a dynamically-typed object-oriented programming language. In Proceedings of the 1989
conference on Programming Language Design and Implementation (PLDI), pages 146–160.
ACM New York, June 1989.

9 Craig Chambers and David Ungar. Iterative type analysis and extended message splitting:
Optimizing dynamically-typed object-oriented programs. In Proceedings of the 1990 confer-
ence on Programming Language Design and Implementation (PLDI), pages 150–164. ACM
New York, 1990.

10 Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge. Optimizing MATLAB
through just-in-time specialization. In Proceedings of the 2010 international conference on
Compiler Construction (CC), pages 46–65. Springer Berlin Heidelberg, 2010.

11 Jack W Davidson and Sanjay Jinturkar. Aggressive loop unrolling in a retargetable, optimiz-
ing compiler. In Proceedings of the 1996 international conference on Compiler Construction
(CC), pages 59–73. Springer Berlin Heidelberg, 1996.

12 Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. Static type
inference for ruby. In Proceedings of the 2009 ACM Symposium on Applied Computing
(SAC), pages 1859–1866. ACM New York, 2009.

M. Chevalier-Boisvert and M. Feeley 1021

13 Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R.
Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruder-
man, Edwin W. Smith, Rick Reitmaier, Michael Bebenita, Mason Chang, and Michael
Franz. Trace-based just-in-time type specialization for dynamic languages. In Proceedings
of the 2009 conference on Programming Language Design and Implementation (PLDI),
pages 465–478. ACM New York, 2009.

14 Andreas Gal, Christian W. Probst, and Michael Franz. HotpathVM: an effective jit compiler
for resource-constrained devices. In Proceedings of the 2nd international conference on
Virtual Execution Environments (VEE), pages 144–153. ACM New York, 2006.

15 David Gudeman. Representing type information in dynamically typed languages, 1993.
16 Brian Hackett and Shu-yu Guo. Fast and precise hybrid type inference for JavaScript. In

Proceedings of the 33rd ACM SIGPLAN conference on Programming Language Design and
Implementation (PLDI), pages 239–250. ACM New York, June 2012.

17 Urs Hölzle and David Ungar. Optimizing dynamically-dispatched calls with run-time type
feedback. In Proceedings of the 1994 conference on Programming Language Design and
Implementation (PLDI), pages 326–336. ACM New York, 1994.

18 ECMA International. ECMA-262: ECMAScript Language Specification. European As-
sociation for Standardizing Information and Communication Systems (ECMA), Geneva,
Switzerland, fifth edition, 2009.

19 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In
Proceedings of the 16th International Symposium on Static Analysis (SAS), pages 238–255.
Springer Berlin Heidelberg, 2009.

20 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural analysis with
lazy propagation. In Proceedings 17th International Static Analysis Symposium (SAS).
Springer Berlin Heidelberg, September 2010.

21 Vineeth Kashyap, John Sarracino, John Wagner, Ben Wiedermann, and Ben Hardekopf.
Type refinement for static analysis of JavaScript. In Proceedings of the 2013 Dynamic
Languages Symposium (DLS). ACM New York, 2013.

22 Francesco Logozzo and Herman Venter. RATA: rapid atomic type analysis by abstract
interpretation; application to JavaScript optimization. In Proceedings of the 2010 interna-
tional conference on Compiler Construction (CC), pages 66–83. Springer Berlin Heidelberg,
2010.

23 E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies.
Commun. ACM, 22(2):96–103, February 1979.

24 Frank Mueller and David B. Whalley. Avoiding unconditional jumps by code replication. In
Proceedings of the 1992 conference on Programming Language Design and Implementation
(PLDI), pages 322–330. ACM New York, 1992.

25 Frank Mueller and David B. Whalley. Avoiding conditional branches by code replication. In
Proceedings of the 1995 conference on Programming Language Design and Implementation
(PLDI), pages 56–66. ACM New York, 1995.

26 John Plevyak and Andrew A. Chien. Type directed cloning for object-oriented programs. In
Proceedings of the Workshop for Languages and Compilers for Parallel Computing (LCPC),
pages 566–580, 1995.

27 Massimiliano Antonio Poletto. Path splitting: a technique for improving data flow analysis.
PhD thesis, MIT Laboratory for Computer Science, 1995.

28 Rodrigo Sol, Christophe Guillon, FernandoMagno Quintão Pereira, and Mariza A.S. Bi-
gonha. Dynamic elimination of overflow tests in a trace compiler. In Jens Knoop, editor,
Proceedings of the 2011 international conference on Compiler Construction (CC), pages
2–21. Springer Berlin Heidelberg, 2011.

ECOOP’15

1022 Simple and Effective Type Check Removal through Lazy Basic Block Versioning

29 Litong Song and Krishna M Kavi. A technique for variable dependence driven loop peeling.
In Algorithms and Architectures for Parallel Processing, 2002. Proceedings. Fifth Interna-
tional Conference on, pages 390–395. IEEE, 2002.

30 Sebastian Unger and Frank Mueller. Handling irreducible loops: optimized node splitting
versus dj-graphs. ACM Transactions on Programming Languages and Systems (TOPLAS),
24(4):299–333, July 2002.

31 Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems (TOPLAS), 13(2):181–210,
April 1991.

32 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to rule
them all. In Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, Onward! 2013, pages 187–204.
ACM New York, 2013.

33 Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and Chris-
tian Wimmer. Self-optimizing ast interpreters. In Proceedings of the 2012 Dynamic Lan-
guage Symposium (DLS), pages 73–82. ACM New York, 2012.

CHAPTER 6

TYPED OBJECT SHAPES

6.1 Problem and Motivation

Lazy basic block versioning, as introduced in Chapter 5, eliminates on average 71%

of dynamic type checks on our benchmarks. As was shown in the paper, lazy BBV is

able to outperform an intraprocedural type analysis based on a fixed point computation,

both in terms of type tests eliminated and in terms of average speedups. However, the

technique has two important limitations that put it at a disadvantage when compared to

whole-program type analyses.

The first is that BBV, as introduced, is intraprocedural only, and cannot propagate

information through function calls. The second is that it has no notion of object property

types. Lazy BBV can identify which local variables are object references, but the types

of properties being read from objects are always unknown. This is problematic because

JS, as an object-oriented language, makes extensive use of objects. JS also defines global

variables as being properties of a global object. As such, every time a global function is

called, we must check that we are in fact calling a valid function, and rely on dynamic

dispatch.

Ideally, we would like to have a mechanism which allows us to know the type tags

associated with object properties without having to perform dynamic type tests on every

property read. We would also like to be able to associate method identity informa-

tion with object properties, so that when we perform method calls, we can know which

method we are calling, enabling us to eliminate dynamic dispatch. Knowing the iden-

tity of methods is also very valuable for implementing interprocedural BBV, as will be

explained in Chapter 7.

6.2 Whole-Program Analysis

In principle, it is possible to implement whole-program type analyses for JS. The

natural thing to do, in the context of objects, is to segregate JS objects into pseudo-

classes, and try to prove that specific properties of each pseudo-class must have a given

type. There are a few difficulties with implementing such an analysis in JS, however.

The most obvious is that of dynamic code loading and the eval construct, which can

invalidate facts our analysis relies on. Even if we ignore this issue, and decide to only

handle programs which do not employ dynamic code loading, whole-program analysis

of JS code remains nontrivial.

Trying to prove facts about JS objects is difficult because the semantics of object

property accesses in JS are complex and highly dynamic. There are at least two points

which get in the way of static analysis. The first is that JS allows indexing objects

using string keys, as if the objects were dictionaries, with the object[key] syntax.

The unfortunate implication is that we may end up in a situation where a property of

unknown type is written to an unknown object with an unknown key. This makes it

difficult to segregate objects into pseudo-classes and assign types to their properties.

Another problem point when it comes to analyzing JS property accesses is that prop-

erties can be added to objects at any time, and JS allows reading missing properties from

objects, which produces the special undefined value rather than throwing an excep-

tion. The result is that, if we cannot prove that a given property must be defined on an

object when reading it, then we do not know that the value read will not be undefined.

This results in situations where undefined flows into various calculations and pollutes

analysis results.

We have attempted to implement a static whole-program type analysis for JS inspired

by [25, 26] as part of the Tachyon project (see Chapter 3), with the goal of eventually

using this analysis to optimize programs. The results were unfortunately somewhat dis-

appointing, with the analysis taking up to several minutes to execute on some programs.

We also had limited success in terms of analysis precision. It is very difficult, even

with path-sensitivity and context information, to prove ahead of time that object prop-

88

erties must be defined on every path from an object’s initialization to the point where a

property is read.

6.3 Typed Shapes

All modern JS engines have some concept of maps or shapes (see Section 2.4). That

is, objects have an associated piece of metadata which tells us which properties the

objects define, the memory offset at which the property is located, as well as which

special attributes the property has (e.g. read-only, non-enumerable). As such, it is fairly

natural to think that shapes could be extended to also encode property types. Such an

extension was implemented by the Truffle Object Storage Model (OSM) [37], which can

encode property type tags as part of object shapes.

Encoding property type information in object shapes is convenient because JS en-

gines already rely on dynamic dispatch (inline caches) at property access sites to estab-

lish a correspondence between object shapes and the memory offsets at which properties

are stored. As such, once we have estalished the shape of an object at a property read,

we also get type information about the property being read, at no extra cost. The tradeoff

is that we must check the types of properties being written. This cost is easily amortized,

however, because typical JS programs have much more property reads than writes.

The paper presented in this chapter describes how we implement a system of typed

object shapes inspired from the Truffle OSM. Our system encodes type tags, and also

method identity information. We incorporate typed shapes with BBV by extending it

to propagate object shape information as part of the normal versioning scheme. This

allows us to effectively eliminate dynamic type tag tests after property reads, but also to

eliminate redundant dynamic shape tests. Furthermore, because BBV is very effective at

propagating value types, we are able to eliminate most type tests at property writes.

6.4 Results

The results obtained are very encouraging. By making BBV aware of object prop-

erty types, we have been able to eliminate 48% more type tests than was possible using

89

intraprocedural BBV alone, and achieve further speedups. In addition to this, the encod-

ing of method identity information in typed shapes allows BBV to know the identity of

callees for 90% of calls.

This paper was submitted to CGO 2016, but was unfortunately not accepted. We

have chosen to include it in this thesis because it provides a detailed explanation of the

workings of typed object shapes, which are central to our implementation of interpro-

cedural BBV (see Chapter 7). The article is publicly available through the arxiv.org

website [8].

90

Extending Basic Block Versioning with Typed Object Shapes

Maxime Chevalier-Boisvert
DIRO, Université de Montréal, Quebec, Canada

Marc Feeley
DIRO, Université de Montréal, Quebec, Canada

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—compilers, optimization, code gen-
eration, run-time environments

Keywords Just-In-Time Compilation, Dynamic Language,
Optimization, Object Oriented, JavaScript

Abstract
Typical JavaScript programs feature a large number of object
property accesses. Hence, fast property reads and writes are
crucial for performance. Unfortunately, many (often redun-
dant) dynamic checks are implied in each property access
and the semantic complexity of JS makes it difficult to opti-
mize away these tests through program analysis.

We introduce two techniques to effectively eliminate a
large proportion of dynamic checks related to object prop-
erty accesses. Typed shapes enable code specialization based
on object property types without potentially complex and ex-
pensive analyses. Shape propagation allows the elimination
of redundant shape checks in inline caches. These two tech-
niques combine particularly well with basic block version-
ing, but should be easily adaptable to tracing JIT compilers
and method JITs with type feedback.

To assess the effectiveness of the techniques presented,
these were implemented in Higgs, a type-specializing JIT
compiler for JS. Across the 26 benchmarks tested, the tech-
niques eliminate on average 48% more type tests, reduce
code size by 17% and reduce execution time by 25% com-
pared to a baseline using untyped shapes. On several bench-
marks, Higgs extended with the techniques presented out-
performs Truffle/JS.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Typical JavaScript (JS) programs make heavy use of object
property accesses. The highly complex and highly dynamic
semantics of JavaScript mean that each property access con-
tains several implicit dynamic checks (Section 2.1). Gener-
ating efficient machine code means eliminating as many of
these checks as possible.

The Truffle Object Storage Model (OSM) [24] introduces
the idea of specializing object shapes by using them to en-
code property types. This proves useful in eliminating some
dynamic type checks after property reads, but many more
dynamic checks still remain.

Basic Block Versioning (BBV) [7] is a JIT compilation
strategy which allows rapid and effective generation of type-
specialized machine code without a separate type analysis
pass.

The first contribution of this paper (Section 3.1) is the
design of a typed object shape model similar to the Truffle
OSM as a natural extension of BBV, allowing BBV to intro-
spect object types.

The second contribution of this paper (Section 3.3) is
to leverage the strengths of BBV and use it to propagate
object shape information, making it possible to optimize
Polymorphic Inline Caches (PICs) by eliminating redundant
dynamic shape tests.

The third contribution of this paper (Section 3.2) is the
extension of the typed shape model to encode not only type
tags, but also method identity information, which is particu-
larly useful to optimize JS code.

Typed shapes and shape propagation were implemented
in Higgs1, a JIT compiler for JS built around BBV. Empir-
ical results across 26 benchmarks (Section 4) show that, on
average, the techniques introduced eliminate 48% more type
tests, reduce code size by 17% and reduce execution time
by 25%. The performance of Higgs with typed shapes and
shape propagation is competitive with that of Truffle/JS, out-
performing it on several benchmarks.

1 https://github.com/higgsjs/Higgs

1 2016/2/22

2. Background
2.1 JavaScript Objects
JavaScript objects follow a prototype-based inheritance
model [14] inspired from Self [6]. Objects can dynamically
grow, meaning that properties can be added to or deleted
from objects at any time. The types of properties are not
constrained, and properties can be redefined to have any
type at any time. Semantically, JS objects can be thought of
as behaving somewhat like hash tables, but the semantics of
property accesses are complex.

In JS, object properties can be plain values or acces-
sor (getter/setter) methods which may produce side-effects
when executed. Individual object properties can have read-
only (constant) attribute flags set, which prevents their re-
definition. When a property is not defined on an object, the
lookup must traverse the prototype chain recursively. These
factors mean that each JS property read or write implies mul-
tiple hidden dynamic tests. Ideally, most of these tests should
be optimized away to maximize performance.

Global variables in JS are stored on a first-class global
object, which behaves like any other. Properties of the global
object can thus also be defined to be read-only, or be accessor
methods. Hence, optimizing global property accesses is also
nontrivial. Since the global object is a singleton and typically
large in size, modern JS engines such as Google’s V8 tend to
implement it using a different strategy from regular objects.

2.2 Object Shapes
JS objects can be thought of as behaving like hash maps
associating property name strings to property values and
attribute flags. However, implementing objects using hash
maps is inefficient both in terms of memory usage and prop-
erty access time. Doing so means that each object must store
a name string, a value and attribute flags for each property.
Furthermore, each property access must execute a costly
hash table lookup which may involve repeated indirections.

High-performance JS engines (V8, SpiderMonkey, etc.)
rely on the concept of object shapes, also known as “hid-
den classes”. This approach aims to exploit the fact that pro-
grams typically create many objects with the same proper-
ties, that objects are usually initialized early in their lifetime,
and that property deletions and additions after initialization
are infrequent.

Shapes are object layout descriptors. They are composed
of shape nodes, with each shape node containing the name,
memory offset and attribute flags for one property. All exist-
ing shape nodes are part of a global tree structure represent-
ing the order in which properties have been added to objects.
Each object contains a shape pointer which points to a shape
node representing the last property added to the said object.
All objects are initially created with no properties and begin
their lifetime with the empty shape. Adding a property to an
object updates its shape pointer.

Figure 1. Object shapes as part of a shape tree

Figure 2. Property read using a Polymorphic Inline Cache
(PIC)

Figure 1 illustrates the shape nodes for three different JS
object literals. All objects have a hidden proto property
which stores a pointer to the prototype object. All three
objects also share properties named x and y, hence, part of
the shapes of these two objects are made of the same shape
nodes. The last property added to object a is z, and so it has
shape S1. The last property added to objects b and c is w,
and so these have shape S2.

2.3 Polymorphic Inline Caches
Object shapes are more space efficient than using hash maps,
since multiple objects with the same set of properties and ini-
tialization order can share the same shape. However, shapes,
by themselves, do not make property accesses faster. Naively
traversing the shape structure of an object on every property
access is highly inefficient.

Polymorphic Inline Caches (PICs), pioneered in the im-
plementation of the Self programming language [6, 13], are
commonly used to accelerate property accesses. They are
used by modern JS VMs such as V8 and SpiderMonkey. The
core idea is to generate machine code on the fly to determine

2 2016/2/22

the shape of an object and generate an efficient dispatch at
each property access site. This machine code takes the form
of a cascade of shape test operations and is updated as new
object shapes are encountered. PICs can be thought of as
offloading the property lookup overhead to code generation
time instead of execution time.

Figure 2 illustrates a property read implemented using a
PIC. Two shape tests match previously encountered object
shapes. Each test, if it encounters a matching shape, triggers
the execution of a load machine instruction which reads the
property from the object at the correct memory offset. This
memory offset is determined at code generation time based
on the object’s shape, which tells us where each property is
located. When objects passing through a property read have
only one possible shape, a property read can be as fast as one
comparison and one load instruction.

2.4 Basic Block Versioning
Basic Block Versioning (BBV) is a JIT code generation
technique originally applied to JavaScript by Chevalier-
Boisvert & Feeley [7], and adapted to Scheme by Saleil
& Feeley [21]. The technique bears similarities to HHVM’s
tracelet-based compilation approach and Psyco’s JIT code
specialization system [20].

Efficient type-specialized machine code is generated in a
single pass, without the use of costly type inference analyses
or profiling. BBV achieves this by lazily cloning and type-
specializing single-entry single-exit basic blocks on the fly.
As in Psyco, code generation and code execution are inter-
leaved so that run-time type information can be extracted
by the code generation engine. The accumulated informa-
tion allows the removal of redundant type tests, particularly
in performance-critical paths.

Higgs segregates values into a few categories based
on type tags [11]. These categories are: 32-bit integers
(int32)2, 64-bit floating point values (float64), miscel-
laneous JS constants (const), and four kinds of garbage-
collected pointers inside the heap (string, object, array,
closure). These type tags form a simple, first-degree notion
of types that is used to drive code versioning.

BBV, as introduced in [7], deals only with function pa-
rameter and local variable types. It has no mechanism for
handling object property types and global variable types.
The current work extends BBV to include a more advanced
notion of object types based on typed shapes, and enable
type-specialization based on object property and global vari-
able types.

3. Typed Shapes
The main contributions of this paper are presented here.

2 Note that while according to the ES5 specification all JavaScript num-
bers are IEEE double-precision floating point values, high-performance
JavaScript VMs typically attempt to represent small integer values using
machine integers so as to improve performance by using lower latency in-
teger arithmetic instructions.

Figure 4. Object shapes for global properties and functions

3.1 Typed Shapes and Property Types
Object shapes in other JS engines encode property names,
slot indices and meta-information such as attribute flags
(writable, enumerable, etc.). We extend shapes to also en-
code property types: this makes it possible for us to special-
ize code based on the types of property values. Testing the
shape of an object once gives us the type of all its properties.

Figure 3 shows the object shapes associated with three
different JS object literals. Shape nodes are now annotated
with type tags corresponding to property values. Objects b

and c share the same property names, but the type of their y
property differs. The property b.y is a string, whereas c.y
has value null which has type tag const.

Our definition of typed shapes is not recursive. Shapes
corresponding to property values which are object references
do not encode the shape of the object being referenced. This
is because objects are mutable. Hence, if a.b is an object,
its shape cannot be guaranteed to remain the same during
the execution of a program, but objects will always remain
objects, so the type tag of a.b will not change so long as this
property is not overwritten.

With typed shapes, type tags are encoded in the shape and
so do not need to be encoded in objects themselves, making
it possible for property values to be stored in an unboxed
representation, avoiding boxing and unboxing overhead. In
the optimal case, properties can be read and written in a
single machine instruction.

A further advantage is that the shape of an object can tell
us whether or not the object has a prototype or not. This
eliminates the need to perform a null check when going up
the prototype chain during a property read.

3.2 Method Identity and the Global Object
The property type information currently encoded in typed
shapes includes type tags, but also function pointers (func-
tion/method identity). Encoding function pointers makes it

3 2016/2/22

Figure 3. Type meta-information on object shapes and property additions

possible to know the identity of callees at call sites. This in-
formation is highly valuable for optimization purposes. For
instance, when the identity of a callee is known at a call site,
passing unused argument values (such as the hidden this

argument) can be avoided.
Our approach uses a unified implementation for all ob-

jects, including the global object. This makes it possible to
optimize global property accesses using the same techniques
as regular property accesses. This contrasts with V8, which
uses a collection of individual mutable cells to implement its
global object.

Figure 4 illustrates the global object shape in relation to
a snippet of code where a call to enable debug replaces
an inactive implementation of the debug function by one
which displays error messages. The enable debug function
causes the global object to switch from shape G1 to G2.
The global object shape encodes the identity of functions,
meaning that for both calls to debug, the identity of the
function is known at code generation time, avoiding the need
for dynamic dispatch.

3.3 Shape Propagation
As described in Section 2.3, Polymorphic Inline Caches
(PICs) are a lazily generated chain of dynamic tests to iden-
tify an object’s shape and quickly select a fast implementa-
tion of a property read or write. Typical PIC implementations
treat them as monolithic blocks of machine code which are
an internal part of property access instructions in the com-
piler’s Intermediate Representation (IR).

To integrate typed shapes with BBV, PICs are divided into
their component parts, exposing them as explicit chains of
individual shape tests in our IR. This allows BBV to extract
shape information from shape tests and propagate known ob-
ject shapes from one property access site to another by lever-
aging existing BBV type propagation mechanisms. Propa-
gating shapes allows eliminating redundant (repeated) shape
tests in successive property accesses on the same object.

As shown in [7], most Static Single Assignment (SSA)
values are monomorphic in terms of type tags. Few values
are polymorphic. This remains true when shapes come into

the picture. Most program points see only one shape for a
given value. However, the objects which are polymorphic
in shape are sometimes megamorphic. That is, one property
access site can receive objects of a large number of different
shapes. This can lead to situations where rare megamorphic
values cause disproportional code size growth. To avoid this
problem, shape propagation is limited to tracking one possi-
ble shape per SSA value.

3.4 Guarding Property Writes
Overwriting a property value may cause an object to tran-
sition to a new shape if the type of the new value doesn’t
match the type encoded in the object’s current shape. For in-
stance, if object c from Figure 3 was to have its y property
overwritten with a string value (e.g. c.y = "bif"), then the
shape of c, which was previously S3, would change to S2.

As such, in a system with typed shapes, property writes
have implicit guards on the type of values written. For-
tunately, it’s possible to eliminate most such guards be-
cause values types are often known when compiling property
writes (see Section 4.1). It’s also the case that shape changes
are relatively rare, and incur little overhead. Assuming that
the new shape has been previously allocated and initialized,
which is often the case, changing an object’s shape is only a
matter of overwriting the object’s shape pointer, which can
be done in a single machine instruction.

3.5 A Simple Example
With polymorphic inline caches, reading or writing to an ob-
ject property implies first performing a number of dynamic
checks to dispatch read or write operations based on the ob-
ject shape (see section 2.3). Many JS primitives, including
arithmetic operators, also perform dynamic dispatch based
on value types.

Figure 5 illustrates the operations involved in increment-
ing the value of an integer property on an object (a.z = a.z

+ 1) when using traditional PICs (without typed shapes).
There are four dynamic checks. A first check is performed to
dispatch based on the object shape when reading the prop-
erty. A second check is performed to dispatch based on the

4 2016/2/22

Figure 5. Operations involved in a property read and write
with traditional Polymorphic Inline Caches (PICs)

Figure 6. Operations involved in a property read and write
with typed shapes and shape propagation, starting with an
object of unknown shape

type of the property’s value (which is int32 in this case). A
third check is performed to verify that the result of the inte-
ger addition operation did not result in an integer overflow.
Finally, a fourth dynamic check is performed when writing
back the incremented value. This last check is necessary be-
cause the property read and property write PICs are distinct.

Typed shapes and shape propagation produce more effi-
cient code, as illustrated in Figure 6. The dynamic dispatch
based on the property type is eliminated, because this type
is encoded in the object’s shape, and is thus automatically

known once the object’s shape has been tested. The dispatch
based on the object’s shape when writing back the prop-
erty is eliminated because the object’s shape was previously
tested and this information is propagated to the write. There
is no need to guard the type of tmp2 when writing the new
property value because this type is deduced based on the type
of tmp1.

4. Evaluation
An implementation of the Higgs JIT compiler extended with
typed shapes and shape propagation was tested on a total of
26 classic benchmarks from the SunSpider and V8 suites.
One benchmark from the SunSpider suite and one from the
V8 suite were not included in our tests because Higgs does
not yet implement the required features. Benchmarks mak-
ing use of regular expressions were discarded because Higgs
and Truffle/JS [25, 26] do not implement JIT compilation of
regular expressions.

To measure steady state execution time separately from
compilation time in a manner compatible with both Higgs
and Truffle/JS, the benchmarks were modified so that they
could be run in a loop. A number of warmup iterations
are first performed so as to trigger JIT compilation and
optimization of code before timing runs take place.

The number of warmup and timing iterations were scaled
so that short-running benchmarks would execute for at least
1000ms in total during both warmup and timing. Unless
otherwise specified, all benchmarks were run for at least 10
warmup iterations and 10 timing iterations.

Truffle/JS v0.5 was used for performance comparisons.
Tests were executed on a system equipped with an Intel Core
i7-4771 CPU and 16GB of RAM running Ubuntu Linux
12.04. Dynamic CPU frequency scaling was disabled to
ensure reliable timing measurements.

4.1 Type Tag Tests
Encoding type tags in object shapes implies that property
writes must be guarded with type tag checks. Fortunately,
with BBV, the type tag of values is most often known at
code generation and does not need to be dynamically tested.
As a result, just 7% of property writes need to be guarded
on average across benchmarks. While guards increase the
number of dynamic type tests slightly, typed shapes make it
possible to eliminate type tag tests at property reads, and
there are 11.7 property reads for every property write on
average.

Figure 7 shows the total number of type tag tests (includ-
ing guards on property writes) performed with typed shapes
and with typed shapes coupled with shape propagation rela-
tive to a baseline which uses traditional inline caches with-
out typed shapes or shape propagation. The chart makes it
clear that typed shapes reduce the number of type tests ex-
ecuted very significantly, by 47% on average. In the case of

5 2016/2/22

bi
tw

is
e-

an
d

nb
od

y

pa
rt

ia
l-s

um
s

de
lta

bl
ue

ric
ha

rd
s

v8
-r

ay
tra

ce

3d
-m

or
ph

3d
-r

ay
tra

ce

cr
yp

to
-m

d5

sp
la

y

bi
na

ry
-tr

ee
s

cr
yp

to
-s

ha
1

re
cu

rs
iv

e

ea
rle

y-
bo

ye
r

ba
se

64

v8
-c

ry
pt

o

fa
st

a

3d
-c

ub
e

co
rd

ic

sp
ec

tra
l-n

or
m

ns
ie

ve

bi
ts

-in
-b

yt
e

3b
its

-b
yt

e

fa
nn

ku
ch

ns
ie

ve
-b

its

na
vi

er
-s

to
ke

s

ge
o

m
ea

n

0%

20%

40%

60%

80%

100%
typed shapes typed + prop

Figure 7. Number of type tests relative to inline cache baseline

the bitwise-and microbenchmark, which operates entirely
on global variables, type tests are reduced by nearly 100%.

Note that enabling shape propagation produces a slight
reduction in type tests on some benchmarks. This is be-
cause enabling the propagation of shapes allows eliminating
a null check while traversing the prototype chain, since the
prototype link is itself represented as a typed property. The
benchmarks which benefit the most from this phenomenon
are those which make heavy use of inheritance.

4.2 Shape Tests
Figure 8 illustrates the number of shape tests relative to
a baseline using polymorphic inline caches (without typed
shapes or shape propagation). Notably here, enabling typed
shapes increases the total number of dynamic shape tests by
17% on average. This is because enabling the specialization
of shapes based on property types necessarily result in more
shape polymorphism at run time. Hence, individual inline
caches tend to see longer chains of shape tests.

Enabling shape propagation produces a reduction in the
number of shape tests when compared to baseline, by 19%
on average. Hence, shape propagation effectively mitigates
the increase in shape tests resulting from typed shapes, This
is because there are many instances where multiple property
reads on the same object occur within a given function, and
shape propagation can allow eliminating further shape tests
after the first property access on an object.

4.3 Function Calls
Without typed shapes, Higgs does not know the identity of
callees at most call sites. With typed shapes, on average,
callee identity is known for 90% of calls executed. For most
benchmarks, the callee identity is known for all calls. There
are some exceptions because at present Higgs cannot intro-

spect captured closure variables or closures passed as func-
tion arguments.

4.4 Machine Code Size
Typed shapes allow us to eliminate type checks and generate
more efficient code, which tends to be more compact. As a
result, with typed shapes, the size of generated machine code
is smaller on every benchmark when compared to a baseline
without typed shapes, with an average code size reduction
of 16%. Enabling shape propagation allows us to eliminate
redundant shape tests, and yields a 17% average code size
reduction over baseline.

4.5 Compilation time
Typed shapes and shape propagation do not affect compila-
tion time significantly in our system. In the worst case, with
typed shapes and shape propagation, compilation time in-
creases by 5%, but the average change is on the order of 1%.

4.6 Execution Time
Figure 9 shows the execution times obtained with typed
shapes and shape propagation relative to a baseline using in-
line caches only (untyped shapes). Typed shapes alone pro-
duces an average execution time reduction of 21% over un-
typed shapes. Enabling shape propagation yields an average
execution time reduction of 25%, a slight but significant im-
provement over typed shapes alone.

The bitwise-and microbenchmark, using only global
variable accesses in a small loop with no shape polymor-
phism, is an ideal showcase for typed shapes and shape
propagation. However, shape propagation makes little per-
formance difference on some benchmarks. This is in part
because the current implementation cannot preserve known

6 2016/2/22

nb
od

y

3d
-m

or
ph

bi
ts

-in
-b

yt
e

3b
its

-b
yt

e

ns
ie

ve
-b

its

ns
ie

ve

bi
tw

is
e-

an
d

na
vi

er
-s

to
ke

s

fa
nn

ku
ch

v8
-c

ry
pt

o

cr
yp

to
-m

d5

cr
yp

to
-s

ha
1

3d
-c

ub
e

fa
st

a

co
rd

ic

pa
rt

ia
l-s

um
s

de
lta

bl
ue

v8
-r

ay
tra

ce

sp
ec

tra
l-n

or
m

re
cu

rs
iv

e

ba
se

64

ric
ha

rd
s

3d
-r

ay
tra

ce

ea
rle

y-
bo

ye
r

bi
na

ry
-tr

ee
s

sp
la

y

ge
o

m
ea

n

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%
typed shapes typed + prop

Figure 8. Number of shape tests relative to inline cache baseline

bi
tw

is
e-

an
d

de
lta

bl
ue

ric
ha

rd
s

nb
od

y

re
cu

rs
iv

e

bi
na

ry
-tr

ee
s

cr
yp

to
-m

d5

cr
yp

to
-s

ha
1

ba
se

64

v8
-r

ay
tra

ce

ea
rle

y-
bo

ye
r

3d
-r

ay
tra

ce

sp
ec

tra
l-n

or
m

3d
-m

or
ph

co
rd

ic

sp
la

y

pa
rt

ia
l-s

um
s

v8
-c

ry
pt

o

fa
st

a

ns
ie

ve
-b

its

fa
nn

ku
ch

3b
its

-b
yt

e

na
vi

er
-s

to
ke

s

3d
-c

ub
e

ns
ie

ve

bi
ts

-in
-b

yt
e

ge
o

m
ea

n

0%

20%

40%

60%

80%

100%

120%
typed shapes typed + prop

Figure 9. Execution time relative to inline cache baseline (lower is better)

shapes across function calls. Overcoming this limitation is
part of future work (see Section 5).

4.7 Comparison with Truffle/JS
This paper would not be complete without a comparison
of the performance of Higgs against another JavaScript im-
plementation. The performance of Truffle/JS was compared
against that of Higgs. Truffle/JS is an ideal comparison point
as it is, like Higgs, a research VM written in a garbage-
collected language. Truffle/JS also implements a typed shape
system very similar to that presented here.

Since Truffle takes a relatively long time to compile and
optimize code, each benchmark was run for 1000 “warm up”
iterations before measuring execution time, so as to more

accurately measure the final performance of the generated
machine code once a steady state is reached. After the warm
up period, each benchmark is run for 100 timing iterations.

Figure 10 shows the results of our performance com-
parison against Truffle/JS. The left column represents the
speedup of Higgs over Truffle when taking only execution
time into account, with the warmup iterations excluded. The
right column is the speedup of Higgs over Truffle/JS when
comparing total time, including initialization, compilation
and warmup. A logarithmic scale was used due to the wide
spread of data points across multiple orders of magnitude.

On average, when taking only execution time into ac-
count, Higgs outperforms Truffle on 13 out of 26 bench-
marks and is 28% faster than Truffle/JS on average. When

7 2016/2/22

sp
la

y

co
rd

ic

ea
rle

y-
bo

ye
r

fa
nn

ku
ch

3b
its

-b
yt

e

3d
-m

or
ph

bi
ts

-in
-b

yt
e

na
vi

er
-s

to
ke

s

pa
rt

ia
l-s

um
s

ns
ie

ve
-b

its

v8
-r

ay
tra

ce

v8
-c

ry
pt

o

ba
se

64

fa
st

a

3d
-c

ub
e

ns
ie

ve

3d
-r

ay
tra

ce

re
cu

rs
iv

e

nb
od

y

bi
na

ry
-tr

ee
s

sp
ec

tra
l-n

or
m

bi
tw

is
e-

an
d

cr
yp

to
-s

ha
1

ric
ha

rd
s

cr
yp

to
-m

d5

de
lta

bl
ue

ge
o

m
ea

n

10%

100%

1000%

10000%
exec time only total time

Figure 10. Speed relative to Truffle/JS (log scale, bars above 100% favor Higgs)

comparing wall clock times, Higgs outperforms Truffle on
the majority of benchmarks, and is 116% faster on average.

It is not the case that Higgs outperforms Truffle/JS on
every benchmark. JIT compiler design is a complex prob-
lem space, and as a result, there are benchmarks where each
system outperforms the other by a wide margin. Truffle/JS
is a method-based compiler implementing profiling, type-
feedback and type analysis. It has a few technical advan-
tages over Higgs, such as the use of method inlining, a more
sophisticated register allocator, multithreaded background
compilation, and a highly optimized garbage collector im-
plementation (the Java VM’s). These tools give Truffle an
edge on specific benchmarks, such as v8-raytrace. Never-
theless, Higgs produces competitive machine code in many
cases.

It is interesting to note that Higgs performs much bet-
ter than Truffle/JS on the bitwise-and microbenchmark,
indicating that Higgs likely has faster global variable ac-
cesses than Truffle/JS Higgs also outperforms Truffle/JS on
the recursive microbenchmark, which takes advantage of
known callee identities provided by typed shapes.

5. Future Work
Work by Costa, Alves et al. [22] has shown that significant
speedups can be obtained by specializing JS code based on
function argument values, which are often constant. Simi-
larly, typed shapes could be extended to allow for the direct
encoding of constants into object shapes. This would likely
be useful for global variables which are never mutated and
effectively constant.

An important limitation of the shape propagation ap-
proach as presented in this paper is that it is intraprocedural
only. Known shapes are not propagated to callees, and fur-
thermore, known shape information is lost whenever a func-

tion call is made. This is because function calls are currently
treated as black boxes, and it is not guaranteed that callees
will not change the shape of objects used in the caller.

It may be interesting to investigate interprocedural basic
block versioning. Specifically, it may be useful to specialize
function entry points so that known types can be propagated
from callers to callees. This would contribute to eliminating
more type tests and shape tests. Typed shapes will make
the implementation of interprocedural BBV easier and more
efficient, since they provide precise information about callee
identities.

Having information about callee identities should also
make it possible to implement a rudimentary analysis to as-
sess whether or not callees modify object shapes or not. Hav-
ing a way to guarantee that a callee will not cause any object
to change shape makes it possible to avoid discarding shape
information at call sites, thereby improving the effectiveness
of shape propagation.

6. Related Work
Polymorphic Inline Caches (PICs) were originally intro-
duced in literature discussing the efficient implementation
of the Self programming language [6, 13]. Self did not use
shapes exactly as discussed in this paper, but instead a con-
cept of maps which grouped objects cloned from the same
prototype. These served the same purpose as shapes, reduc-
ing memory usage overhead and storing metadata relating to
properties (though not type information). Today, Commer-
cial JS implementations such as Google’s V8, Mozilla’s Spi-
derMonkey, Apple’s Nitro and Oracle’s Truffle/JS [25, 26]
all implement something equivalent to PICs and object
shapes to accellerate property accesses.

The Truffle Object Storage Model (OSM) [24] describes
a typical implementation of an object system where each ob-

8 2016/2/22

ject contains a pointer to its shape, which describes the lay-
out of the object (property locations) and property attribute
metadata. The OSM introduces the notion of specializing
shapes based on types to the literature. We show how to ef-
fectively integrate such a model with a compiler based on
BBV, and extend upon it with the notion of shape propaga-
tion, taking advantage of the capabilities of BBV.

Several whole-program type analyses for JS were devel-
oped [15–17]. These analyses are generally considered too
expensive to use in a JIT compiler. They also tend to suffer
from precision limitations when dealing with object types. It
is often difficult, for instance, to prove that a specific prop-
erty of an object must be initialized at a given program point.
Work done by Kedlaya, Roesch et al. [18] shows strategies
for improving the precision of type analyses by combining
them with type feedback and profiling. The strategy shows
promise, but does not explicitly deal with object and prop-
erty types.

Work by Hackett and Guo at Mozilla resulted in an in-
terprocedural hybrid type analysis for JS suitable for use in
production JIT compilers [12]. This approach has a notion
of object types segregating objects by prototype, and tries to
bound types a given property associated with a given object
type may have. The Mozilla approach does not always guar-
antee that a given property has a given type, and so often
cannot unbox property values. It also relies on a supplemen-
tal analysis which examines constructor function bodies to
try and prove property initialization. The approach presented
here is simpler and potentially more precise.

Trace compilation, originally introduced by the Dy-
namo [2] native code optimization system, and later applied
to JIT compilation in HotpathVM [9] aims to record long se-
quences of instructions executed inside hot loops. Such lin-
ear sequences of instructions often make optimization sim-
pler. Type information can be accumulated along traces and
used to specialize code and remove type tests [8], overflow
checks [23] or unnecessary allocations [3].

The TraceMonkey tracing JIT compiler for JS can spe-
cialize traces based on types [8]. It can also guard based
on object shapes and eliminate some shape dispatch over-
head inside traces, similarly to the shape propagation dis-
cussed in this paper. It does not, however specialize code
based on property types. Trace compilation [4] and meta-
tracing are an active area of research [5] in the realm of
dynamic language optimization. Most tracing JIT compilers
for languages which have some concept of objects, tuples or
records could likely benefit from the approaches discussed
in this paper.

Facebook’s HHVM for PHP [1] uses an approach called
Tracelet specialization which has many similarities with
BBV. Since PHP is an object-oriented dynamic language
and HHVM already specializes code using type guards, it
seems this system could likely benefit from typed shapes
and shape propagation.

Grimmer, Matthias et al. [10] implemented an interpreter
which can access C structs and arrays as JS objects at bet-
ter speeds than native JS objects. This is useful when inter-
facing with C, but likely impractical as a drop-in replace-
ment for JS objects. There is a proposal for the inclusion of
typed objects (also known as ”struct types”) in ECMAScript
7, a future revision of the JS language. These are objects us-
ing pre-declared memory layouts with type-annotated fields,
much like C structs. One of the stated goals is to improve
optimization opportunities for JIT compilers [19].

7. Conclusion
Two techniques to effectively specialize code based on ob-
ject and property types were described. Typed shapes, an ex-
tension to the familiar object shapes used in most commer-
cial JS engines, enables the elimination of type tag checks
after property reads. Shape propagation allows the elimina-
tion of redundant shape checks, reducing the overhead of
Polymorphic Inline Caches (PICs).

Across the 26 benchmarks tested, when compared to a
baseline without typed shapes, the combination of these two
techniques eliminate on average 48% more type tests and
19% of shape tests. Code size is reduced by 17% and exe-
cution time by 25%. An implementation of Higgs extended
with typed shapes and shape propagation performs compet-
itively with Truffle/JS, outperforming it on several bench-
marks.

The techniques presented combine particularly well with
a compiler architecture based on BBV, but should be easily
adaptable to compilers based on trace compilation or method
JITs with type feedback.

An artifact including complete source code will be sub-
mitted to the CGO artifact evaluation committee so that our
results can be replicated.

Acknowledgements
Special thanks go to Laurie Hendren, Erick Lavoie, Vincent
Foley, Paul Khuong, Molly Everett, Brett Fraley and all
those who have contributed to the development of Higgs.

This work was supported, in part, by the Natural Sciences
and Engineering Research Council of Canada (NSERC) and
Mozilla Corporation.

References
[1] Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ot-

toni, Andrew Paroski, Brett Simmers, Edwin Smith, and
Owen Yamauchi. The hiphop virtual machine. In Proceedings
of the 2014 conference on Object Oriented Programming Sys-
tems Languages & Applications (OOPSLA), pages 777–790.
ACM New York, 2014.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transpar-
ent dynamic optimization system. In Proceedings of the 2000
conference on Programming, pages 1–12. ACM New York,
2000.

9 2016/2/22

[3] Carl Friedrich Bolz, Antonio Cuni, Maciej FijaBkowski,
Michael Leuschel, Samuele Pedroni, and Armin Rigo. Alloca-
tion removal by partial evaluation in a tracing jit. In Proceed-
ings of the 20th ACM SIGPLAN workshop on Partial Evalua-
tion and Program Manipulation (PEPM), pages 43–52. ACM
New York, 2011.

[4] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and
Armin Rigo. Tracing the meta-level: Pypy’s tracing jit com-
piler. In Proceedings of the 4th workshop on the Implemen-
tation, Compilation, Optimization of Object-Oriented Lan-
guages and Programming Systems, pages 18–25. ACM, 2009.

[5] Carl Friedrich Bolz, Tobias Pape, Jeremy Siek, and Sam
Tobin-Hochstadt. Meta-tracing makes a fast Racket. Work-
shop on Dynamic Languages and Applications, 2014.

[6] C. Chambers, D. Ungar, and E. Lee. An efficient implemen-
tation of Self a dynamically-typed object-oriented language
based on prototypes. SIGPLAN Not., 24(10):49–70, Septem-
ber 1989.

[7] Maxime Chevalier-Boisvert and Marc Feeley. Simple and Ef-
fective Type Check Removal through Lazy Basic Block Ver-
sioning. In 29th European Conference on Object-Oriented
Programming (ECOOP 2015), volume 37 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 101–123.
Schloss Dagstuhl, 2015. http://arxiv.org/abs/1411.

0352.

[8] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson,
David Mandelin, Mohammad R. Haghighat, Blake Kaplan,
Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Rud-
erman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,
Mason Chang, and Michael Franz. Trace-based just-in-time
type specialization for dynamic languages. SIGPLAN Not.,
44(6):465–478, June 2009.

[9] Andreas Gal, Christian W. Probst, and Michael Franz. Hot-
pathVM: an effective jit compiler for resource-constrained de-
vices. In Proceedings of the 2nd international conference on
Virtual Execution Environments (VEE), pages 144–153. ACM
New York, 2006.

[10] Matthias Grimmer, Thomas Würthinger, Andreas Wöß, and
Hanspeter Mössenböck. An efficient approach for accessing
C data structures from javascript. In Proceedings of the 9th
International Workshop on Implementation, Compilation, Op-
timization of Object-Oriented Languages, Programs and Sys-
tems PLE, ICOOOLPS ’14, pages 1:1–1:4, New York, NY,
USA, 2014. ACM.

[11] David Gudeman. Representing type information in dynami-
cally typed languages, 1993.

[12] Brian Hackett and Shu-yu Guo. Fast and precise hybrid type
inference for JavaScript. In Proceedings of the 33rd ACM
SIGPLAN conference on Programming Language Design and
Implementation (PLDI), pages 239–250. ACM New York,
June 2012.

[13] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing
dynamically-typed object-oriented languages with polymor-
phic inline caches. In Proceedings of the European Confer-
ence on Object-Oriented Programming, ECOOP ’91, pages
21–38, London, UK, UK, 1991. Springer-Verlag.

[14] ECMA International. ECMA-262: ECMAScript Language
Specification. European Association for Standardizing In-
formation and Communication Systems (ECMA), Geneva,
Switzerland, fifth edition, 2009.

[15] Simon Holm Jensen, Anders Møller, and Peter Thiemann.
Type analysis for JavaScript. In Proceedings of the 16th Inter-
national Symposium on Static Analysis (SAS), pages 238–255.
Springer Berlin Heidelberg, 2009.

[16] Simon Holm Jensen, Anders Møller, and Peter Thiemann. In-
terprocedural analysis with lazy propagation. In Proceedings
17th International Static Analysis Symposium (SAS). Springer
Berlin Heidelberg, September 2010.

[17] Vineeth Kashyap, John Sarracino, John Wagner, Ben Wieder-
mann, and Ben Hardekopf. Type refinement for static analysis
of JavaScript. In Proceedings of the 2013 Dynamic Languages
Symposium (DLS. ACM New York, 2013.

[18] Madhukar N. Kedlaya, Jared Roesch, Behnam Robatmili,
Mehrdad Reshadi, and Ben Hardekopf. Improved type spe-
cialization for dynamic scripting languages. SIGPLAN Not.,
49(2):37–48, October 2013.

[19] Nicholas D. Matsakis, David Herman, and Dmitry Lomov.
Typed objects in javascript. In Proceedings of the 10th ACM
Symposium on Dynamic Languages, DLS ’14, pages 125–
134, New York, NY, USA, 2014. ACM.

[20] Armin Rigo. Representation-based just-in-time specialization
and the psyco prototype for python. In Proceedings of the
2004 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation, PEPM ’04, pages
15–26, New York, NY, USA, 2004. ACM.

[21] Baptiste Saieil and Marc Feeley. Code versioning and ex-
tremely lazy compilation of scheme. In Scheme and Func-
tional Programming Workshop, 2014.

[22] Henrique Nazare Santos, Pericles Alves, Igor Costa, and Fer-
nando Magno Quintao Pereira. Just-in-time value specializa-
tion. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO),
CGO ’13, pages 1–11, Washington, DC, USA, 2013. IEEE
Computer Society.

[23] Rodrigo Sol, Christophe Guillon, FernandoMagno
Quinto Pereira, and Mariza A.S. Bigonha. Dynamic
elimination of overflow tests in a trace compiler. In Jens
Knoop, editor, Proceedings of the 2011 international confer-
ence on Compiler Construction (CC), pages 2–21. Springer
Berlin Heidelberg, 2011.

[24] Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris
Seaton, Christian Humer, and Hanspeter Mössenböck. An
object storage model for the truffle language implementa-
tion framework. In Proceedings of the 2014 International
Conference on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools,
pages 133–144, New York, NY, USA, 2014. ACM.

[25] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas
Stadler, Gilles Duboscq, Christian Humer, Gregor Richards,
Doug Simon, and Mario Wolczko. One VM to rule them all.
In Proceedings of the 2013 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming

10 2016/2/22

& Software, Onward! 2013, pages 187–204. ACM New York,
2013.

[26] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Du-
boscq, Doug Simon, and Christian Wimmer. Self-optimizing
ast interpreters. In Proceedings of the 2012 Dynamic Lan-
guage Symposium (DLS), pages 73–82. ACM New York,
2012.

11 2016/2/22

CHAPTER 7

INTERPROCEDURAL BASIC BLOCK VERSIONING

Typed shapes, as presented in Chapter 6, enable BBV to encode information about

object property and global variable types. With this addition, lazy BBV is able to elim-

inate 79% of dynamic type tests. The technique is still limited in one important aspect,

which is that it treats function calls like black boxes. The paper presented in this chap-

ter explains the mechanisms we have devised to address this limitation. This paper has

been submitted to ECOOP 2016 and is still under review. In the meantime, it is publicly

available through arxiv.org [6].

7.1 Problem and Motivation

BBV, as we have presented it so far, assumes that all function parameters have un-

known types when entering a function. This seems wasteful, because in most cases,

the types of function arguments are probably known at call sites. The result is that we

are performing many dynamic type tests which could potentially be avoided. The same

could be said about function return values, which are always assumed to be of unknown

types in callers.

The recursive Fibonacci function (see Figure 7.1) exemplifies this. Here, it is obvious

to a programmer that given an integer input n, the fib function is only ever called

on integer values. As such, no dynamic type tests should be needed. However, with

intraprocedural versioning as presented thus far, the type of the parameter n is tested on

each call. The type of values returned by fib is also tested twice per call. To compute

fib(40), over 662 million is_int32 type tag tests are performed.

7.2 Interprocedural Versioning

A straightforward extension of BBV is to pass type information from callers to

callees simply by allowing for multiple specialized versions of function entry points.

function fib(n)
{

if (n < 2)
return n;

return fib(n-1) + fib(n-2);
}

fib(40);

Figure 7.1: The recursive fibonacci function

This allows callers to propagate the argument types they known to callees, which receive

the appropriate parameter type information. By using callee identity information pro-

vided by typed shapes (Chapter 6), entry point versioning can be done without dynamic

dispatch. That is, if the identity of a callee is known, it becomes possible for the caller to

jump directly to a specialized entry point in the callee which encodes information about

parameter types, with zero dynamic overhead.

Similarly, passing type information from callees to callers can be achieved by spe-

cializing call continuations in callers. That is, we can create specialized versions of the

basic blocks to which the callee function returns which have the appropriate return value

type. We sought a way to achieve this without dynamic dispatch overhead. This is more

complex to do than with entry point versioning, because a given return statement can

potentially jump back to many different call sites. The solution we have found uses

speculation and deoptimization to propagate return value types only for functions which

always return values of the same type at run time.

7.3 Alternative Solutions

Baptiste & Feeley have investigated the use of a mechanism to propagate function

argument types based on dynamic dispatch in their versioning compiler for Scheme [33].

In their system, closures store a pointer to a table of entry point addresses. The table is

indexed based on the type signature at the call site. This system makes it possible to

pass argument type information when the identity of the callee is not known, which is

103

currently necessary in their system because they do not have an equivalent to our typed

shapes mechanism. The main downside is that each call requires two indirections in

order to get an entry point address, whereas in our system, a direct jump can be used.

However, their system could conceivably perform better for megamorphic call sites.

The strategy we use to propagate return value types is speculative. Instead, we could

have used a mechanism based on dynamic dispatch, dynamically choosing a version of

the call continuation corresponding to the returned value type. However, we saw the use

of dynamic dispatch as undesirable because the added cost of dynamic dispatch is likely

as much or more as the cost of simply testing the return value type, which is one single

dynamic type test.

Discussions with a compiler engineer from the Google V8 team revealed that V8

does not currently perform interprocedural type analysis of any sort, as such analyses

are considered too costly. Instead, V8 relies on inlining of frequent calls to eliminate

type checks interprocedurally in hot methods. The techniques we have developed could

likely help improve the performance of modern JS VMs, particularly in recursive code.

7.4 Results

With interprocedural propagation of type information, BBV becomes competitive, in

terms of optimization capabilities, with whole-program type analysis. One of the most

important results given in the following article is that we are able to eliminate 94.3% of

dynamic type checks on average, across our set of benchmarks. We are able to show that

this is more than what is achievable through static whole-program type analysis alone.

This somewhat counter-intuitive result demonstrates that BBV is not merely a quick

approximation of a more traditional type analysis, as it can actually be more precise in

practice.

104

Interprocedural Type Specialization of JavaScript
Programs Without Type Analysis
Maxime Chevalier-Boisvert1 and Marc Feeley2

1 DIRO, Université de Montréal
Montreal, Quebec, Canada

2 DIRO, Université de Montréal
Montreal, Quebec, Canada

Abstract
Previous work proposed lazy basic block versioning, a technique for just-in-time compilation of
dynamic languages which we believe represents an interesting point in the design space. Basic
block versioning is simple to implement, simple enough that a single developer can build a
complete just-in-time compiler for JavaScript in a year, yet it performs surprisingly well as it
propagates context-sensitive type information to generate type-specialized code on the fly.

In this paper, we demonstrate that lazy basic block versioning can be extended in simple ways
to propagate type information across function call boundaries. This gives some of the benefits
of whole-program analysis, or a tracing compiler, without having to implement the machinery
for either. We have implemented this proposal in the Higgs JavaScript virtual machine and
report on the empirical evaluation of this system on a set of industry standard benchmarks. The
approach eliminates 94.3% of dynamic type tests on average, which we show is more than what
is achievable with any static whole-program type analysis.

1998 ACM Subject Classification D.3.4 Programming Languages: Processors—compilers, op-
timization, code generation, run-time environments

Keywords and phrases Just-In-Time Compilation, Dynamic Language, Optimization, Object
Oriented, JavaScript

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

A production compiler for a widely used dynamic language such as JavaScript is an intricate
piece of software, usually the outcome of 10 to 100 developer-years of effort. The architecture
of such a compiler is one of the first design decisions made during development. This
decision is rarely revisited, as architectural changes tend to be disruptive. In previous work,
Chevalier-Boisvert and Feeley argued for an architecture based on the concept of lazy Basic
Block Versioning (BBV) [14]. They claimed that the technique hits a sweet spot in the
tradeoff between implementation complexity and performance of the generated code. As
evidence they designed and implemented Higgs, a JavaScript virtual machine and Just-In-
Time (JIT) compiler which has performance competitive with other research virtual machines
and can sometimes match the performance of production systems such as V8. Notably, the
Higgs compiler took about a year of development time. The reduced development time is
particularly important for languages that are maintained by small teams of volunteers. Lazy
BBV occupies a point in the design space of JIT compilers that is between method-based
compilers and tracing JITs such as Mozilla’s TraceMonkey [17], and run-time specialization
of Oracle’s Truffle [36]. The simplicity of BBV is one of its main advantages. It does not

© Maxime Chevalier-Boisvert and Marc Feeley;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

23:2 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

require additional infrastructure such as a static analyzer to approximate program facts, or
an interpreter to record traces.

BBV is a simple and elegant compilation technique to optimize dynamically typed
programs on the fly. The technique uses dynamic type tests which are part of the implicit
semantics of primitive operators in dynamically typed languages to capture and propagate
type information. Type-specialized versions of individual basic blocks are lazily compiled
based on the types encountered during the execution of programs. The technique, as described
in [14], is limited to optimizing type checks on local variables within a single function. The
compiler has no information on the types of arguments, return values, or object properties,
and is thus unable to eliminate some redundant dynamic type checks.

This paper extends basic block versioning with the ability to propagate type information
across function call boundaries and to specialize code based on the type of object properties.
In the framework of basic block versioning, these extensions are easy to implement and seem
to work rather well. This paper makes the following specific contributions:

1. The combination of BBV with a typed object shape mechanism which encodes property
type information including method identity, enabling the compiler to know the identity of
callees at call sites (Section 4.1).

2. The extension of BBV with specialized function entry points, which makes it possible to
pass argument types from callers to callees. This is done efficiently, without dynamic
dispatch, using method identity information provided by typed object shapes (Section 4.2).

3. A speculative technique for call continuation specialization, which enables type information
about return values to be passed from callees back to callers, without dynamic overhead
(Section 4.3).

To validate our claims we implemented these contributions in the Higgs JavaScript compiler
and evaluated its performance on industry standard benchmarks (Section 5).

A word about evaluation is in order. We considered implementing our ideas within an
existing JavaScript compiler, but quickly realized that the architectural changes required
were beyond our resources. Thus we picked Higgs as a vehicle for our experiments. This
choice comes at a cost; comparing performance of a research prototype to a production
system is tricky. A production system has a mature garbage collector, highly tuned libraries,
and performs a massive number of optimizations (many, but not all, of which are orthogonal
to this work). A research prototype is likely to not have any of those. It is thus not surprising
that Higgs runs roughly half as fast as V8. This may be a sign that our approach is inherently
limited, or that we simply lack the resources of major corporations. Cognizant of the inherent
limitations of empirical evaluations, we have chosen the following approach. We measure
the improvement of the techniques presented in this paper by the number of type tests we
are able to eliminate and the performance impact over the previous version of the Higgs
compiler. This gives us a metric of progress. We compare our implementation with two
relevant systems, one is the TraceMonkey tracing compiler. The reason for this comparison
is that basic block versioning has been compared by others to tracing compilation. It is thus
interesting to see how the two perform on the same benchmarks. Then we choose Truffle/JS
as an example of a research prototype, albeit one implemented by a large team of industrial
researchers. For completeness we include, in Appendix A, performance results comparing
Higgs to leading commercial JavaScript implementations.

M., Chevalier-Boisvert and M., Feeley 23:3

2 Influences and Related Work

The literature on just-in-time compilation is rich with, by now, decades of work. The work
presented here was influenced by many results obtained in the Self project and should be
contrasted to work on type analysis and dynamic compilation of dynamic languages.

Shapes. The notion of describing objects with shapes can be traced back to the Self
programming language [11, 22], where so-called maps group objects cloned from the same
prototype. Like shapes, maps reduce memory usage and stored metadata relating to properties
(though not type information). Today, commercial JavaScript implementations such as V8,
SpiderMonkey, Nitro and Truffle/JS have all adopted this idea. Each object contains a pointer
to its shape, which describes the layout of the object and property attribute metadata. Truffle
introduced the notion of specializing shapes based on property types to the literature [35].
This paper builds on that idea and demonstrates how to effectively integrate such a model
with basic block versioning.

Splitting. Basic block versioning bears resemblance to Self’s iterative type analysis and
extended message splitting [13] which combines static analysis with a transformation that
compiles multiple versions of loops and duplicates control flow paths to eliminate type tests.
The analysis works in an iterative fashion, transforming the control flow graph of a function
while performing a type analysis. It integrates a mechanism to generate new versions of loops
when needed, and a message splitting algorithm to try and minimize type information lost
through control flow merges. One key disadvantage is that statically cloning code requires
being conservative, generating potentially more code than necessary, as it is impossible to
statically determine exactly which control flow paths will be taken at run time, and this
must be overapproximated. The approach also has roots in Agesen’s cartesian product
algorithm [2] which avoids the loss of type information at control-flow merges by representing
program state with sets of vectors of concrete types.

Analysis. There have been multiple efforts to devise type analyses for dynamic languages.
Rapid Atomic Type Analysis [27] is an intraprocedural flow-sensitive analysis that assigns
unique types to each variable. Attempts have also been made to define formal semantics for
a subset of dynamic languages such as JavaScript [5], Ruby [16] and Python [4], sidestepping
some of the complexity of these languages and making them more amenable to traditional type
inference techniques. There are also flow-based interprocedural type analyses for JavaScript
based on sophisticated type lattices [23, 24, 25]. Such analyses are too time consuming to
be used in a just-in-time compiler. Kedlaya, Roesch et al. [26] improved the precision of
type analyses by combining them with type feedback and profiling. This shows promise,
but does not deal with object shapes and property types. Work has also been done on a
flow-sensitive alias analysis for dynamic languages [19], but it is still unclear if the analysis
can be used on-line. More recently, Brian Hackett et al. presented an interprocedural hybrid
type analysis for JavaScript suitable for use in a just-in-time compiler [21]. While this is
an important step forward, it remains vulnerable to imprecise type information polluting
analysis results. Basic block versioning can help improve on the results of such an analysis by
hoisting tests out of loops and generating multiple optimized code paths where appropriate.

Tracing. Trace compilation, introduced by Dynamo [6] and later applied to just-in-time
compilation in HotpathVM [18], aims to record sequences of instructions executed inside
hot loops. Such sequences make optimization simpler. Type information is accumulated
along traces and used to specialize code and remove type tests [17], overflow checks [34]

CVIT 2016

23:4 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

or unnecessary allocations [8]. Basic block versioning resembles tracing in that context
updating works on essentially linear code fragments and code is optimized similarly to
what may be done in a tracing compiler. Code is also compiled lazily, as needed, without
compiling whole functions at once. Trace compilation [9] and meta-tracing are an active area
of research [10]. The simplicity of basic block versioning is one of its main advantages. It does
not require external infrastructure such as an interpreter to record traces. Trace compiler
implementations must deal with corner cases that do not appear with basic block versioning.
With trace compilation, there is the potential for trace explosion if there are a large number
of control flow paths going through a loop [7]. It is also not obvious how many times a loop
should be recorded or unrolled to maximize the elimination of type checks. This problem is
solved with basic block versioning since versioning is driven by type information and there is
a natural bound to the number of versions that comes from the finite number of types in the
system. Trace compilers must implement parameterizable policies and mechanisms to deal
with recursion, nested loops and potentially very long traces that do not fit in instruction
caches.

Customization. Customization is another technique developed to optimize Self pro-
grams [12]. It compiles multiple copies of methods specialized on the receiver object type.
Similarly, type-directed cloning [28] clones methods based on argument types, producing more
specialized code using richer type information. The work of Chevalier-Boisvert et al. on
just-in-time specialization for MATLAB [15] and similar work done for the MaJIC MATLAB
compiler [3] tries to capture argument types to dynamically compile optimized versions of
whole functions. All of these techniques are forms of type-driven code duplication aimed at
extracting type information. Basic block versioning operates at a lower level of granularity,
allowing it to find optimization opportunities inside of method bodies by duplicating code
paths. There are similarities between the Psyco JIT specialization work and our own. The
Psyco prototype for Python [31] interleaves execution and JIT compilation to gather run time
information about values. It then specializes code on the fly based on types and values. It
also incorporates a scheme where functions can have multiple entry points. We extend upon
this work by combining a similar approach, that of basic block versioning, with typed shapes
and a mechanism for propagating return types from callees to callers with low overhead. The
tracelet-based approach used by Facebook’s HHVM for PHP [1] bears similarities to our own.
HHVM compiles small code regions (tracelets) which are single-entry multiple-exit basic
blocks. Each tracelet is type-specialized based on variable types observed at compilation time.
Guards are inserted at the entry of tracelets to verify at run time that the types observed
are still valid for all future executions. High-level instructions in tracelets are specialized
based on the guarded types. If these guards fail, new versions of tracelets are compiled based
on different type information and chained to the failing guards. One difference with our
work is that HHVM uses an ahead-of-time type analysis pass. Another difference is that
with the approach described in [1], each tracelet re-checks the types of its inputs, whereas
BBV propagates known types to successor blocks and doesn’t usually need to re-check the
types of local variables. Finally, HHVM falls back on an interpreter when too many tracelet
versions are generated. Higgs falls back to generic basic block versions which do not make
type assumptions but are still compiled. Beyond type specialization, recent work by Costa et
al. on just-in-time value specialization has shown that specializing JavaScript functions based
on specific argument values can lead to performance improvements [33], as many functions
are always called with the same arguments.

M., Chevalier-Boisvert and M., Feeley 23:5

3 Background

The work presented in this paper is implemented in a research virtual machine for JavaScript
(ECMAScript 5) known as Higgs 1. The Higgs virtual machine includes a just-in-time
compiler built around lazy basic block versioning. This compiler is intended to be lightweight
with a simple implementation. Code generation and type specialization are performed
in a single pass. Register allocation is done using a greedy allocator. The runtime and
standard libraries are self-hosted, written in an extended dialect of JavaScript with low-level
primitives. These low-level primitives are special instructions which allow expressing type
tests, pointer manipulation, as well as integer and floating point machine instructions in the
source language.

3.1 Value Types and Type Tests
Higgs segregates values into categories based on type tags [20]. These type tags form a
simple type system that is used for versioning. The types are mostly straightforward and
correspond closely to values manipulated by JavaScript programs. The one exception is the
unknown type tag that is used by the compiler to indicate that no information is available
for the corresponding value.

int32 signed 32-bit integers
float64 64-bit floating point numbers
undef the undefined value
null the null value
bool true and false boolean values
string strings
array arrays
closure function objects
object Plain JS objects
unknown type unknown

JS is a dynamically typed and late-bound programming language. There are no static type
annotations, and the types of variables may change during the execution of a program. As
such, there are many implicit type checks hiding in even the simplest JS programs. Figure 1
shows an iterative function which illustrates this. The sum function contains three primitive
operators: a comparison, a decrementation and an addition. Each of these operators implicitly
checks the types of its operands as part of its semantics.

In all, there are four implicit type checks hiding in the sum function:
1. The > operator checks the type of n before comparing it against the integer zero.
2. The type of s is checked before computing s += i
3. The type of i is also checked before computing s += i
4. The decrementation operator checks the type of i before computing --i

A naive JS implementation performs these type checks every time an operator is evaluated. In
Higgs, this is done using primitive instructions which can test the type tags of values. Figure 2
illustrates the primitive operations and implicit type tag checks executed by Higgs with basic

1 https://github.com/higgsjs

CVIT 2016

23:6 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

function sum(n) {
var s = 0;
for (var i = n; i > 0; --i)

s += i;
return s;

}

sum (500);

Figure 1 Iterative JS sum function.

block versioning disabled when sum(500) is evaluated. When computing sum(500), only
small integer (int32) values are used, and so, much of these type checks are redundant.

A: s = 0, i = 0
if not is_int32(n) goto stub1

B: if not gt_int32(n,0) goto I // if not (n > 0)

C: if not is_int32(s) goto stub2
D: if not is_int32(i) goto stub3
E: s = add_int32(s,i)

if overflow goto stub4

F: if not is_int32(i) goto stub5
G: i = sub_int32(i,1)

if overflow goto stub6
H: goto B

I: return s

Figure 2 Control-flow graph of the sum function before BBV

The is_int32 primitives act as guards which verify that the type tag associated with
a given variable is int32 before executing a machine instruction specific to integer values.
Should any of these tests fail, execution will flow to a stub that generates new machine code
to handle non-integer values. The overflow test primitives serve to verify that an integer
overflow did not occur, and handle such an occurrence otherwise.

3.2 Lazy Basic Block Versioning
Basic block versioning is a just-in-time code generation technique originally applied to
JavaScript by Chevalier-Boisvert & Feeley [14], and adapted to Scheme by Saleil & Feeley [32].
The technique bears similarities to HHVM’s tracelet-based compilation approach and Psyco’s
just-in-time code specialization system [31].

BBV works at the level of individual basic blocks. We define a basic block as a single-entry
single-exit sequence of instructions. Basic blocks end with one branching instruction which
jumps to other basic blocks. In Higgs, basic blocks are usually short, sometimes just one
instruction in our Intermediate Representation (IR), due to the large number of type tests,
each of which is treated as a branching instruction which terminates the current basic block.

The BBV engine interleaves compilation and execution. It generates machine code for
basic blocks lazily, instantiating them into one or more versions, each type-specialized based
on accumulated type information. BBV propagates type information by maintaining a
context for each block version which stores known type information about live variables.

M., Chevalier-Boisvert and M., Feeley 23:7

This context is updated as block versions are compiled.
Type tag tests are used to capture type information and enrich the versioning context.

We know, for instance, that if we branch on the “true” side of an is_int32(n) test, then
n must have tag int32 in the successor block. This fact is exploited by instantiating a
specialized version of the successor block based on the knowledge that n is int32. Because
BBV uses lazy code generation, it never generates block versions for types that do not occur
at run time. It achieves this by delaying the compilation of conditional branch targets using
machine code stubs.

A: s = 0, i = 0
if not is_int32(n) goto stub1

B: if not gt_int32(n,0) goto I

// s,i,n are known to be int32
C: // is_int32 (s) check eliminated
D: // is_int32 (i) check eliminated
E: s = add_int32(s,i)

if overflow goto stub2

// s,i,n are known to be int32
F: // is_int32 (i) check eliminated
G: i = sub_int32(i,1)

if overflow goto stub3
H: goto B

I: return s

Figure 3 Control-flow graph of the sum function after BBV

Using BBV, three of the four implicit type checks in the sum function from Figure 1 are
eliminated. The resulting optimized control flow graph is shown in Figure 3. A single type
test remains: the type of n is tested when entering the function. When first executing the
sum(500) call, Higgs takes the following steps to compile and optimize the sum function:

The sum function is entered, block A is executed. The s and i variables are initialized
to 0. The context is updated to indicate both s and i have type tag int32. The type
of n is unknown. The is_int32(n) branch is made to point to machine code stubs and
execution is resumed.
Execution resumes. The is_int32(n) check evaluates to “true”. A stub for block B is
hit. This stub calls back into the compiler.
Compilation resumes, and a version of block B with n known to be int32 is generated.
Stubs are generated for the gt_int32(n,0) branch targets.
Execution resumes. A stub of block C is hit.
Compilation resumes. A version of block C with n known to be int32 is produced. The
variables s and i are already known to be int32, hence the type tag checks in C and D
can be evaluated at compilation time and eliminated. A stub is produced for the integer
overflow check.
Execution resumes. No overflow occurs, a stub for block F is hit.
Compilation resumes. A version of block F with s, i and n as int32 is compiled. The
type check in F is evaluated at compilation time and eliminated. Stubs for the overflow
branch in G are produced.
Execution resumes. No overflow occurs, a stub of block H is hit.

CVIT 2016

23:8 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

Compilation resumes. Block H produces a jump to the version of B that was already
generated, where s, i and n are all known to be int32.
Execution resumes and continues until the gt_int32(n,0) test in block B fails. Note
that no more type checks are executed.
The loop test fails. A stub for block I is hit. Block I is compiled.
Execution resumes at block I, the sum function returns to the caller.

Because of its JIT nature, BBV has at least two powerful advantages over traditional static
type analyses. The first is that BBV considers only the parts of the control flow graph that
get executed, and it knows precisely which they are, as machine code is only generated for
basic blocks which are executed. The second is that code paths can often be duplicated
and specialized based on different type combinations, making it possible to avoid the loss of
precision caused by control flow merges in traditional type analyses.

3.3 Motivating Example
The example in Figure 1 is one for which plain intraprocedural BBV works particularly
well. In this section, we will provide a motivating example for our work which highlights the
limitations of the unextended BBV approach described in [14]. We will then show how we
have extended BBV to remove these limitations.

function sumList(lst)
{

if (lst == null)
return 0

return lst.val + sumList(lst.next)
}

function makeList(len)
{

if (len == 0)
return null

return { val: len , next: makeList(len -1) }
}

var lst = makeList (100)
if (sumList(lst) != 5050)

throw Error(’incorrect␣sum’)

Figure 4 JS function to recursively sum the values stored in a linked list.

Figure 4 shows the sumList function for recursively traversing a linked list and computing
the sum of numerical values stored in each node. While this small program may appear
simplistic, there is much semantic complexity hidden behind the scenes. A correct but naive
implementation of this function contains six implicit dynamic type tag tests, which must be
eliminated to maximize performance:
1. The tag of the lst argument is checked when comparing it against null.
2. The tag of lst is re-checked before reading the lst.val property.
3. The tag of lst is checked a third time before reading the lst.next property.
4. The sumList function is a mutable global variable. Before calling it, there is an implicit

check to make sure that this is in fact a closure.
5. The tag of lst.val is checked before computing lst.val + sumList(lst.next).
6. The tag of sumList(lst.next) is also checked, because functions calls can return values

of any type.

M., Chevalier-Boisvert and M., Feeley 23:9

The BBV algorithm described in [14] is limited to an intraprocedural scope, that is, it deals
with local variable types only. It cannot pass type information between callers and callees. It
also assumes that all object properties (including global variables, which are properties of the
global object) have unknown type. As such, the unextended BBV algorithm is ill-equipped
to optimize the sumList function, or object-oriented JS code in general.

The implicit tests executed by a version of Higgs without BBV are shown in Figure 5.

A: if is_null(lst) goto I

B: if not is_object(lst) goto stub1
C: val = read_prop(lst , ’val’)

if not is_object(lst) goto stub2

D: next = read_prop(lst , ’next’)
sumfn = read_prop(globalObj , ’sumList ’)
if not is_closure(sumfn) goto stub3

E: t1 = sumfn(next)
if not is_int32(val) goto stub4

F: if not is_int32(t1) goto stub5

G: t2 = add_int32(val , t1)
if overflow goto stub6

H: return t2

I: return 0

Figure 5 Implicit type checks in the sumList function.

Once the type tag of the lst parameter has been tested and found to be object,
intraprocedural BBV can eliminate the second is_object test. Unfortunately, it cannot
eliminate any of the other type tag tests. Since nothing is known about object property
types, the type tags of the val and next properties must be tested for each call. The type
tag of sumList is also tested before every call. Lastly, the return type of the sumList call is
checked after each call. Clearly, most of these checks are provably redundant, and it should
be feasible to eliminate them. The next sections will explain the ways in which we have
extended BBV to give it the necessary capabilities.

4 Interprocedural Basic Block Versioning

This section describes the three extensions to basic block versioning that allow us to propagate
type information across procedure calls.

4.1 Typed Object Shapes

BBV, as presented in [14], deals with function parameter and local variable types only. It
has no mechanism for attaching types to object properties. This is particularly problematic
because, in JS, functions are typically stored in objects. This includes object methods and
also global functions (JS stores global functions as properties of the global object). We would
like to attach type tags to object properties, global variables included.

CVIT 2016

23:10 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

4.1.1 Object Shapes and Shape Tests
Currently, all commercial JS engines have a notion of object shapes, which is similar to
the notion of property maps invented for the Self VM. That is, any given object contains a
pointer to a shape descriptor providing its memory layout: the properties it contains, the
property slot index (memory offset) each property is stored at, as well as attribute flags
(i.e. writable, enumerable, etc.). For instance, linked list nodes and the global object in the
example from Figure 4 have shapes S and G, shown in Figure 6.

// Linked list node shape
S: { val: slot 0, next: slot 1 }

// Global object shape
G: {

...,
Error: slot 1,
...,
makeList: slot 30,
sumList: slot 33,
lst: slot 34

}

Figure 6 Linked list node and global object shapes.

Traversing shape data structures on each object property access would be prohibitively
expensive. As such, Higgs and all modern JS engines optimize property accesses using
Polymorphic Inline Caches (PICs) [22]. PICs are lazily updated sequences of inlined machine
instructions which implement property reads and writes. Typically, a cascade of conditional
branch instructions establish the shape of an object in order to determine the memory offset
at which the property to be read or written is stored. A specialized machine instruction is
then executed which accesses the property at the correct offset. PICs are extended as needed
to handle previously unseen object shapes.

In the sumList function, there are three property reads, and therefore three PICs. Linked
list nodes and the global object only have one possible shape, and so there is only one shape
test inside each PIC. The primitive operations and dynamic tests executed by an unextended
implementation of Higgs which uses PICs are illustrated in Figure 7.

4.1.2 Extending Shapes with Types
Work done on the Truffle Object Model (OSM) [35] describes how object shapes can be
straightforwardly extended to also encode type tags for object properties. Property writes
are guarded to update object shapes when a property type changes. Property reads establish
the shape of objects in order to know the memory offset at which to read properties. When
object shapes also encode the type tags of properties, establishing the shape of an object tells
us not only where to read the property, but also what type tag this property has. Hence,
the cost of guarding property writes is easily offset, because typical JS programs have many
more property reads than property writes. A small overhead is paid to guard property writes,
and in exchange, type checks after property reads are effectively eliminated.

We extend upon the original BBV work with a typed object shape system inspired by
the Truffle OSM. This model is a natural fit for the BBV algorithm. Our extended BBV

M., Chevalier-Boisvert and M., Feeley 23:11

A: if is_null(lst) goto I

B: if not is_object(lst) goto stub1
C: if not is_shape(lst , S) call updatePIC // PIC 1

val = read_slot(lst , 0) // PIC 1
if not is_object(lst) goto stub2

D: if not is_shape(lst , S) call updatePIC // PIC 2
next = read_slot(lst , 1) // PIC 2
if not is_shape(globalObj , G) call updatePIC // PIC 3
sumfn = read_slot(globalObj , 33) // PIC 3
if not is_closure(sumfn) goto stub3

E: t1 = sumfn(next)
if not is_int32(val) goto stub4

F: if not is_int32(t1) goto stub5

G: t2 = add_int32(val , t1)
if not overflow goto stub6

H: return t2

I: return 0

Figure 7 Primitive operations in sumList executed by an unextended version of Higgs.

algorithm not only propagates known type tags associated with values, but also object shapes.
The shape tests which are normally part of PICs allow our JIT compiler to establish and
propagate the shape of an object in the same way that type tag tests enabled BBV to extract
and propagate the type tags of values. Once the shape associated with an object is known to
the BBV engine, then, by extension, the types of all properties read from that object are
also known.

In order to enable interprocedural type propagation, it is useful to know which function is
being called for as many call sites as possible, both for calls to global functions and method
calls. As such, we have gone one step further than the Truffle OSM, and attached not only
type tags to object shapes, but also method identity information. That is, for properties
which have the closure type tag, shapes encode a pointer to the IR node corresponding to
the function the property is a closure of. This enables us to know the identity of callees at
code generation time for the large majority of call sites.

With typed shapes, linked list nodes from the sumList have two possible shapes, one
where the next property is null, and one where it is an object. The global object encodes
not only the offsets of global variables, but also the identity of global functions. This is
illustrated in Figure 8.

In order to allow BBV to take advantage of typed shape information, we break up PICs
into their component parts. PICs, which were previously monolithic sequences of inlined
machine instructions, are now exposed in our compiler IR as separate shape test and memory
access instructions. The result is that the regular BBV mechanisms can be leveraged to
extract shape information from shape tests and propagate it. Propagating shape information
(and the associated property types), allows us to optimize the sumList function as shown in
Figure 9.

Two separate code paths are generated inside the sumList function, one for each of the
two possible shapes of the linked list nodes. More code is generated, but on any given code

CVIT 2016

23:12 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

// Linked list node shape
S1: { val: (slot 0, int32), next: (slot 1, null) }
S2: { val: (slot 0, int32), next: (slot 1, object) }

// Global object shape
// Closures have method identity information
G: {

...,
Error: (slot 1, closure/Error),
...,
makeList: (slot 30, closure/makeList),
sumList: (slot 33, closure/sumList),
lst: (slot 34, object)

}

Figure 8 Typed object shapes encode property type information.

path, at most three type tag tests are executed instead of five. Since linked list nodes now
have two possible shapes, we may test the shape of linked list nodes twice instead of just once
when reading the lst.val property. However, because we no longer employ monolithic inline
caches, this shape is propagated from the property read of lst.val to that of lst.next.
Hence, as a result, we actually perform less dynamic shape tests on average.

4.2 Entry Point Versioning
Procedure cloning has been shown to be a viable optimization technique, both in ahead of
time and JIT compilation contexts. By specializing function bodies based on argument types
at call sites, it becomes possible to infer the types of a large proportion of local variables,
allowing effective elimination of type checks.

Our first extension to BBV is to allow functions to have multiple type-specialized entry
points. That is, when the identity of a callee at a given call site is known at compilation time,
the JIT compiler requests a specialized version of the entry point block for the callee. This
specialized entry point assumes the argument types known at the call site. Type information
is thus propagated from the caller to the callee.

Inside the callee, BBV proceeds as described in [14], deducing local variable types and
eliminating redundant type checks. Our approach places a hard limit on the number of
versions that may be created for a given basic block, and so automatically limits the number
of entry points that may be created for any given function. If there are already too many
specialized entry points for a given callee, a generic entry point is obtained instead. This
does not matter to the caller and occurs rarely in practice.

Propagating types from callers to callees allows eliminating redundant type tests in the
callee, but also makes it possible to pass arguments without boxing them, thereby reducing
the overhead incurred by function calls. Note that our approach does not use any dynamic
dispatch to propagate type information from callers to callees. It relies on information
obtained from typed shapes to give us the identity of callees (both global functions and
object methods) for free. When the identity of a callee is unknown, a generic entry point is
used.

In the case of the linked list example from Section 3.3, we can specialize the sumList

M., Chevalier-Boisvert and M., Feeley 23:13

A: if is_null(lst) goto I:

B: if not is_object(lst) goto stub1
C: if not is_shape(lst , S1) goto C2

val = read_slot(lst , 0) // val is known to be int32
next = read_slot(lst , 1) // next is known to be null

D: if not is_shape(globalObj , G) goto stub2
sumfn = read_slot(globalObj , 33) // sumfn is known to be a closure

E: t1 = sumfn(next)
if not is_int32(t1) goto stub3

G: t2 = add_int32(val , t1)
if overflow goto stub4

H: return t2

I: return 0

C2: if not is_shape(lst , S2) goto stub5
val = read_slot(lst , 0) // val is known to be int32
next = read_slot(lst , 1) // next is known to be object

D2: if not is_shape(globalObj , G) goto stub6
sumfn = read_slot(globalObj , 33) // sumfn is known to be a closure

E2: t1 = sumfn(next)
if not is_int32(t1) goto stub7

G2: t2 = add_int32(val , t1)
if overflow goto stub8

H2: return t2

Figure 9 The sumList function optimized with typed shapes.

function entry point based on the type tag of the lst parameter. As a consequence, we know
whether lst has tag null or object upon entering the function.

With entry point versioning, we can eliminate all type tag checks, except for the check
on the return type of the sumList call. This test seems redundant, considering that, in our
example, the sumList function only ever returns int32 values. The following section will
explain our strategy to optimize this.

4.3 Call Continuation Specialization
Achieving full interprocedural type propagation demands passing the return type information
from callees to callers. While it is fairly straightforward to establish the identity of the callee
a call site will jump to in the majority of cases, establishing where a return statement will
jump to is less straightforward. This is to say, most call sites are monomorphic and jump to
a single function, and hence, a single specialized entry point. Furthermore, versioning code
based on object shapes has the net effect that it will often split polymorphic call sites into
monomorphic ones, which is very convenient for us.

We would like to version call continuations (the code executed when we return from a
call) in accorance with the return types observed during execution. However, one return
statement can potentially jump to several call continuations within a program. This means
we cannot employ the same strategy as with entry point versioning. We cannot simply jump

CVIT 2016

23:14 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

from one return statement to a specialized call continuation which assumes a known return
type. Type information about return values could be propagated with a dynamic dispatch of
the return address indexed with the result type. However this would incur a run time cost.
We would be trading one form of dynamic overhead (that of type checks) for another (that
of dynamic dispatch).

Instead, we have chosen to extend BBV with an approach that has zero run time cost
(amortized overhead). Call continuations are compiled lazily when the first return to a given
continuation is executed. When a function first executes a return statement, its return type,
if known, is memorized. Call continuations are then speculatively optimized based on this
memorized return type. If later returns from this function turn out to have a different return
type, the optimized call continuations are invalidated (see Section 4.3.1).

function f()
{

// Call site
var r = g()

// Call continuation
// The addition has an implicit type check
return r + 2

}

function g()
{

return 1
}

Figure 10 Function call with a fixed return type.

Given the small example given in Figure 10 where a function f calls some function g, where g
always returns values of type int32, the call continuation specialization process continuations
takes the following steps:

A call to g is encountered. Assuming the identity of the callee is known from typed
shapes (otherwise this optimization is not performed), f is added to a list of callers of g.
A stub is generated for the call continuation in f.
Machine code for the call site is generated, it is made to jump directly to a specialized
entry point in g.
Execution resumes in f and jumps to g. Execution continues until g returns.
Compilation resumes. The compiler has determined that g returns an int32 value since
the function g is annotated to indicate that it returns int32 values.
Execution resumes and g returns to the call continuation in f. The call continuation stub
is executed.
The call continuation in f is compiled. The compiler sees that g has been annotated as
returning int32 values. The code in f is optimized using this type information. No type
check is performed at the addition.

The call continuation specialization process presented so far is able to optimize recursive
calls in the sumList example and eliminate the type tag check on the return value. However,
as explained in the next section, this process is speculative and does not work for every
function.

M., Chevalier-Boisvert and M., Feeley 23:15

4.3.1 Invalidating Call Continuations
The makeList function from Figure 4 is an example where the speculative call continuation
specialization process fails. This is because makeList can return both objects and null
values. As such, we cannot specialize callers of the function based on a single return type tag.
In this situation, the speculative call continuation specialization process will try to specialize
continuations, fail, and deoptimize them.

The first time that the makeList function returns, it will return a null value. This first
return will then trigger the compilation of a specialized call continuation which assumes the
return type of makeList to be null. When the function later returns a value with type tag
object, this will be detected at code generation time. Callers of the makeList function will
then have their call continuations deoptimized.

The deoptimization is done simply by writing stubs over already compiled call continu-
ations. Should another makeList call return to a deoptimized call continuation, the stub
will trigger the compilation of a new continuation. This time, the return type will not be
specialized, because we know that makeList can return values with multiple type tags.

The speculative optimization and deoptimization process we employ could be seen as
wasteful. We could have employed a static analysis instead. However, it can be difficult
to establish the return type of a JS function simply by analyzing its code. Furthermore,
the speculative approach can be more precise than a static analysis, because it is able to
take the run time behavior of code into account. The return statements which are never
executed will not be taken into account. A static analysis does not know exactly which
return statements are executed and which are not, but BBV does.

5 Evaluation

This section reports on an empirical evaluation of interprocedural basic block versioning. This
evaluation was carried out based on an implementation of the extensions presented in this
paper, namely typed shapes, entry point specialization, and call continuation specialization,
within the Higgs JavaScript compiler.

A total of 26 industry benchmarks were selected from the SunSpider and V8 suites. The
authors decided not to use the JSBench benchmarks [29] as they are more suited to fast
interpreters (they are short running and have little computation). Benchmarks for which
performance hinges on compiling regular expressions were omitted, as this is not a feature
supported by the Higgs compiler.

To measure steady state execution time separately from compilation time in a manner
compatible with Higgs, V8, SunSpider, TraceMonkey, and Truffle/JS, the benchmarks were
modified so that they could be run in a loop. Warmup iterations are first performed so as
to trigger JIT compilation and optimization of code before timing runs take place. Unless
otherwise specified, 1000 warmup iterations and 100 timing iterations are used.

V8 version 3.29.66, SpiderMonkey version C40.0a1, TraceMonkey version 1.8.5+ and
Truffle/JS v0.9 were used for performance comparisons. Tests were executed on a system
equipped with an Intel Core i7-4771 CPU and 16GB of RAM running Ubuntu Linux 14.04.
Dynamic CPU frequency scaling was disabled to ensure reliable timing measurements.

5.1 Method Identity
The extended version of Higgs tracks object shapes. Without them, the compiler would not
be able to dermine which method is invoked at a call-site. With typed shapes, on average,

CVIT 2016

23:16 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

the identity of the callee method is known for 90% of calls executed dynamically. When entry
point versioning and call continuation specialization are performed, that number increases to
97.5% of calls. In practice, the identity of callees is known for most call sites. The exceptions
are dominated by implementation limitations of the current version of Higgs, which currently
treats captured closure variables as having unknown type.

5.2 Type Tests
sp

la
y

na
vi

er
-s

to
ke

s

3d
-ra

yt
ra

ce

v8
-ra

yt
ra

ce

sp
ec

tra
l-n

or
m

3d
-c

ub
e

ea
rle

y-
bo

ye
r

v8
-c

ry
pt

o

ns
ie

ve
-b

its

co
rd

ic

fa
st

a

fa
nn

ku
ch

ns
ie

ve

ba
se

64

ric
ha

rd
s

cr
yp

to
-s

ha
1

de
lta

bl
ue

cr
yp

to
-m

d5

nb
od

y

bi
na

ry
-tr

ee
s

re
cu

rs
iv

e

bi
tw

is
e-

an
d

3b
its

-b
yt

e

pa
rti

al
-s

um
s

3d
-m

or
ph

bi
ts

-in
-b

yt
e

ar
ith

 m
ea

n

0%

20%

40%

60%

80%

100%
intra BBV typed shapes entry spec entry+cont spec

Figure 11 Proportion of type tests eliminated (higher is better).

sp
la

y

na
vi

er
-s

to
ke

s

3d
-ra

yt
ra

ce

v8
-ra

yt
ra

ce

sp
ec

tra
l-n

or
m

3d
-c

ub
e

ea
rle

y-
bo

ye
r

v8
-c

ry
pt

o

ns
ie

ve
-b

its

co
rd

ic

fa
st

a

fa
nn

ku
ch

ns
ie

ve

ba
se

64

ric
ha

rd
s

cr
yp

to
-s

ha
1

de
lta

bl
ue

cr
yp

to
-m

d5

nb
od

y

bi
na

ry
-tr

ee
s

re
cu

rs
iv

e

bi
tw

is
e-

an
d

3b
its

-b
yt

e

pa
rti

al
-s

um
s

3d
-m

or
ph

bi
ts

-in
-b

yt
e

ar
ith

 m
ea

n

0%

20%

40%

60%

80%

100%
simulated analysis entry+cont spec

Figure 12 Proportion of type tests eliminated with BBV or a type analysis (higher is better).

Figure 11 shows the proportion of type tag tests eliminated with different variants of
basic block versioning. These numbers measure actual tests executed at runtime rather than
tests occuring in the program text. The first column (intra BBV) is the baseline, the number

M., Chevalier-Boisvert and M., Feeley 23:17

of tests that could be eliminated with plain intraprocedural basic block versioning [14]. The
second column (typed shapes) shows the results obtained by adding support for typed object
shapes. The third column (entry spec) adds entry point specialization, and lastly, the fourth
column (entry+cont spec) adds call continuation specialization. On average, the baseline
eliminates 61% of tests, typed shapes increases this to 79%. Entry point specialization
improves the result to 89%. Finally, the addition of call continuation specialization allows
the elimination of 94.3% of dynamic tests, and, in several cases, nearly 100%.

5.3 Type Analysis

An obvious alternative to type propagation with interprocedural basic block versioning would
be to perform a whole-program type analysis. As there are many different analyses in the
literature with different degrees of precision, it is unclear how to evaluate the relative benefits
of this paper’s approach. It is possible to side-step the question by implementing an idealized
static analysis. Each benchmark was run and the result of all tests was recorded. The
benchmarks were then rerun with all type tests that always evaluate to the same result
removed. The second run can be seen as an upper bound for the power of static analysis
by itself. No static analysis can eliminate more tests than one that knows in advance the
outcome of each of them. Figure 12 compares interprocedural basic block versioning and
the idealized type analysis. The fact that basic block versioning outperforms type analysis
should not come as a surprise. An analysis loses precision when control flow merges whereas
basic block versioning creates separate versions to avoid this. The results suggest that no
analysis can eliminate more than an average of 91.4% whereas Higgs can avoid executing
94.3% of tests. On more than half of the benchmarks, the proportion of eliminated tests
exceeds 95%. In all benchmarks at least 80% of tests are removed.

5.4 Execution Time

The execution times of the benchmarks normalized to the unmodified version of the Higgs
compiler [14] appear in Figure 13. With the exception of navier-stokes, nsieve and
nsieve-bits (which are marginally slower), all benchmarks exhibit improvements. The
largest speed up comes from the addition of typed object shapes, they improve execution
time by an average of 26.8%. The addition of entry point specialization further improves
performance, with a combined speedup of 36.3%. Finally, adding call continuation special-
ization brings the total improvement to 37.6%. The performance improvements brought
by continuation specialization are relatively modest compared to those from entry point
specialization. This is to be expected since entry point specialization allow us to eliminate
more type tests (Section 5.2).

5.5 Shape Tests

Our implementation of typed shapes is able to propagate known object shapes from one
property access to another. There are many instances where multiple property reads on the
same object occur within a given function, and shape propagation can allow eliminating
further shape tests after the first property access on an object. Enabling typed shapes
results in an average decrease of 27% in the number of shape tests over an unextended
implementation of Higgs which uses untyped shapes and inline caches.

CVIT 2016

23:18 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

bi
tw

is
e-

an
d

de
lta

bl
ue

ric
ha

rd
s

nb
od

y

re
cu

rs
iv

e

cr
yp

to
-s

ha
1

cr
yp

to
-m

d5

bi
na

ry
-tr

ee
s

sp
ec

tra
l-n

or
m

v8
-ra

yt
ra

ce

ba
se

64

co
rd

ic

ea
rle

y-
bo

ye
r

3d
-ra

yt
ra

ce

bi
ts

-in
-b

yt
e

3d
-m

or
ph

3d
-c

ub
e

v8
-c

ry
pt

o

sp
la

y

pa
rti

al
-s

um
s

fa
st

a

ns
ie

ve

3b
its

-b
yt

e

na
vi

er
-s

to
ke

s

fa
nn

ku
ch

ns
ie

ve
-b

its

ge
o

m
ea

n

0%

20%

40%

60%

80%

100%

120%
typed shapes entry spec entry+cont spec

Figure 13 Execution time relative to baseline (lower is better).

5.6 Call Continuation Specialization
Call continuation specialization uses a speculative strategy to propagate return type inform-
ation. Call continuations for a given callee may be recompiled and deoptimized if values are
returned which do not match previously encountered return types. Empirically, only 2% of
functions executed cause the invalidation of call continuation code. Dynamically, the type
tag of return values is successfully propagated and known to the caller 72% of the time. In
over half of the benchmarks, the type tag of return values is known over 99% of the time.

5.7 Code Size and Compile Time
Adding entry point and continuation specialization to the unmodified Higgs compiler cause
an increase in generated machine code size of 5.5% in the worst case and just 1.0% on
average. Intuitively, one may have expected a bigger code size increase given that entry
point versioning can generate multiple entry points per function. However, better optimized
machine code tends to be more compact. Compile time increases by 3.7% in the worst case
and just 0.01% on average.

5.8 Tracing Compilation
Tracing compilation bears important similarities to basic block versioning. One could expect
tracing to do better because it can optimize long linear sequences of code. Tracing compilation
was introduced to JavaScript with the TraceMonkey [17, 34] compiler. This compiler was in
production within Mozilla’s browser until 2011. Figure 14 compares the performance of the
two compilers. On average, Higgs is 2.7x faster than TraceMonkey, and performs better on
22 out of 26 benchmarks. The benchmarks TraceMonkey achieves the best performance on
tend to be ones which feature short and predictable loops.

The difference between the two is striking. It should be noted that TraceMonkey was built
by a considerably larger team and implements strictly more optimizations than Higgs. For
instance, it can inline while recording a trace. Even without inlining, Higgs does much better
on the largest benchmarks. The two raytrace benchmarks, for instance, make significant use

M., Chevalier-Boisvert and M., Feeley 23:19

3d
-m

or
ph

3b
its

-b
yt

e

pa
rti

al
-s

um
s

cr
yp

to
-m

d5

fa
st

a

sp
ec

tra
l-n

or
m

cr
yp

to
-s

ha
1

v8
-c

ry
pt

o

ric
ha

rd
s

3d
-c

ub
e

ns
ie

ve
-b

its

nb
od

y

ns
ie

ve

co
rd

ic

na
vi

er
-s

to
ke

s

bi
tw

is
e-

an
d

de
lta

bl
ue

ba
se

64

bi
ts

-in
-b

yt
e

3d
-ra

yt
ra

ce

sp
la

y

ea
rle

y-
bo

ye
r

fa
nn

ku
ch

v8
-ra

yt
ra

ce

bi
na

ry
-tr

ee
s

re
cu

rs
iv

e

ge
o

m
ea

n

10%

100%

1000%

10000%

Figure 14 Speed relative to TraceMonkey (log scale, higher favors Higgs).

of object-oriented polymorphism and feature highly unpredictable conditional branches. The
earley-boyer benchmark is the largest of all and features complex control-flow. The splay
and binary-trees benchmarks apply recursive operations to tree data structures. We note
that Higgs performs much better than TraceMonkey on the recursive microbenchmark
which suggests TraceMonkey handles recursion poorly. While we caution against drawing
definitive conclusions, it does appear that tracing compilation in the form implemented by
TraceMonkey is mostly beneficial for computation with hot and predictable loops. Whereas
Higgs is agnostic to the vagaries of control flow. It is worth mentioning that independent
analysis of the behavior of real-world JavaScript programs suggests that hot and predictable
loops are rare [30] and that TraceMonkey does not speed up real-world JavaScript programs
such as the Google website [29].

5.9 Truffle/JS
Another interesting comparison is to look at the Truffle system from Oracle labs. Truffle/JS
is an implementation of JavaScript written in Java and running on a modified Java virtual
machine. Like Higgs, Truffle is a research prototype, but one being built by a larger team
and with a code base about 6 times larger than Higgs’. It benefits from optimizations that
are lacking in Higgs, such as method inlining and a sophisticated register allocator. For
memory management it can defer to Java’s highly tuned garbage collector.

Figure 15 shows the results of a performance comparison of Higgs against Truffle/JS.
After both systems have gone through 1000 warmup iterations, Higgs is on average 69% as
fast as Truffle/JS. The time recorded on the 3bits-byte benchmark is zero, suggesting that
Truffle used side effect analysis to optimize-away the computation.

Higgs and Truffle/JS, being research virtual machines, were not optimized for fast
compilation. As a result, both systems are much slower than other engines when it comes to
compilation times. We cannot directly measure the compilation time taken by Truffle/JS,
but we can use the time it takes to warm up as a rough approximation.

Figure 16 shows the speed of Higgs relative to Truffle/JS when measuring the total
time taken for 1000 iterations of our benchmarks, with no separate warmup iterations. On

CVIT 2016

23:20 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

average, Higgs is 220% as fast as Truffle/JS on this comparison, indicating that the warmup
and compilation time for Higgs is much shorter. This is not surprising, since Higgs begins
generating type-specialized machine code as soon as program execution begins.

3b
its

-b
yt

e

3d
-ra

yt
ra

ce

sp
la

y

na
vi

er
-s

to
ke

s

v8
-ra

yt
ra

ce

co
rd

ic

sp
ec

tra
l-n

or
m

ba
se

64

fa
nn

ku
ch

v8
-c

ry
pt

o

de
lta

bl
ue

3d
-c

ub
e

nb
od

y

ea
rle

y-
bo

ye
r

ric
ha

rd
s

fa
st

a

ns
ie

ve

3d
-m

or
ph

bi
ts

-in
-b

yt
e

re
cu

rs
iv

e

bi
na

ry
-tr

ee
s

ns
ie

ve
-b

its

pa
rti

al
-s

um
s

cr
yp

to
-s

ha
1

bi
tw

is
e-

an
d

cr
yp

to
-m

d5

ge
o

m
ea

n

10%

100%

1000%

Figure 15 Speed relative to Truffle/JS (log scale, higher favors Higgs).

sp
la

y

na
vi

er
-s

to
ke

s

fa
nn

ku
ch

fa
st

a

co
rd

ic

3d
-m

or
ph

v8
-c

ry
pt

o

v8
-ra

yt
ra

ce

pa
rti

al
-s

um
s

ba
se

64

ns
ie

ve
-b

its

3b
its

-b
yt

e

bi
ts

-in
-b

yt
e

nb
od

y

ns
ie

ve

3d
-ra

yt
ra

ce

3d
-c

ub
e

sp
ec

tra
l-n

or
m

bi
na

ry
-tr

ee
s

ea
rle

y-
bo

ye
r

re
cu

rs
iv

e

bi
tw

is
e-

an
d

cr
yp

to
-s

ha
1

de
lta

bl
ue

ric
ha

rd
s

cr
yp

to
-m

d5

ge
o

m
ea

n

10%

100%

1000%

10000%

Figure 16 Speed relative to Truffle/JS, no warmup iterations (log scale, higher favors Higgs).

6 Conclusion

Basic block versioning is a compilation strategy for generating type-specialized machine code
on the fly. This paper demonstrates how to extend this technique to propagate information
across method call boundaries, both from callers to callees and from callees to callers, without
requiring dynamic dispatch and without a separate type analysis pass.

M., Chevalier-Boisvert and M., Feeley 23:21

Across 26 JavaScript benchmarks, interprocedural basic block versioning eliminates, on
average, 94.3% of type tests. This is more than a static type analysis with access to perfect
information could achieve. The proposed extension provides an average execution time
reduction of 37.6% over an unextended basic block versioning implementation.

There is room for future work. While interprocedural basic block versioning yields
encouraging results, more could be done. Two extensions to basic block versioning are
planned: tracking types of closure variables and tracking array types. The Higgs compiler
itself currently lacks several optimizations used by commercial virtual machines. While
they are orthogonal to this paper, these optimizations may close the performance gap with
commercial systems. The first optimization to add is method inlining. Inlining is likely
synergistic with basic block versioning as it provides more contextual information but it
runs the risk of increasing code size as versions proliferate. Bloat can be mitigated by lazy,
incremental, inlining where basic blocks are only added when needed. This would be faster
than inlining entire control flow graphs without needing recompilation of the entire caller at
inlining-time.

Acknowledgements

Special thanks go to Laurie Hendren, Jan Vitek, Erick Lavoie, Vincent Foley, Paul Khuong,
Molly Everett, Brett Fraley and all those who have contributed to the development of Higgs.

This work was supported, in part, by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and Mozilla Corporation.

References
1 Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew Paroski, Brett

Simmers, Edwin Smith, and Owen Yamauchi. The HipHop virtual machine. In Proceedings
of the 2014 conference on Object Oriented Programming Systems Languages & Applications
(OOPSLA), pages 777–790. ACM New York, 2014.

2 Ole Agesen. The cartesian product algorithm: Simple and precise type inference of paramet-
ric polymorphism. In European Conference on Object-Oriented Programming (ECOOP),
pages 2–26, 1995.

3 George Almási and David Padua. MaJIC: compiling MATLAB for speed and respons-
iveness. In Proceedings of the 2002 conference on Programming Language Design and
Implementation (PLDI), pages 294–303. ACM New York, May 2002.

4 Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis. RPython: a
step towards reconciling dynamically and statically typed OO languages. In Proceedings of
the 2007 Dynamic Languages Symposium (DLS), pages 53–64. ACM New York, 2007.

5 Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards type inference
for JavaScript. In Proceedings of ECOOP 2005, pages 428–452. Springer Berlin Heidelberg,
2005.

6 V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimization
system. In Proceedings of the 2000 conference on Programming, pages 1–12. ACM New
York, 2000.

7 Michael Bebenita, Mason Chang, Gregor Wagner, Andreas Gal, Christian Wimmer, and
Michael Franz. Trace-based compilation in execution environments without interpreters.
In Proceedings of the 8th International Conference on the Principles and Practice of Pro-
gramming in Java, PPPJ ’10, pages 59–68, New York, NY, USA, 2010. ACM.

8 Carl Friedrich Bolz, Antonio Cuni, Maciej FijaBkowski, Michael Leuschel, Samuele Pedroni,
and Armin Rigo. Allocation removal by partial evaluation in a tracing JIT. In Proceedings

CVIT 2016

23:22 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

of the 20th ACM SIGPLAN workshop on Partial Evaluation and Program Manipulation
(PEPM), pages 43–52. ACM New York, 2011.

9 Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing the
meta-level: PyPy’s tracing jit compiler. In Proceedings of the 4th workshop on the Im-
plementation, Compilation, Optimization of Object-Oriented Languages and Programming
Systems, pages 18–25. ACM, 2009.

10 Carl Friedrich Bolz, Tobias Pape, Jeremy Siek, and Sam Tobin-Hochstadt. Meta-tracing
makes a fast Racket. Workshop on Dynamic Languages and Applications, 2014.

11 C. Chambers, D. Ungar, and E. Lee. An efficient implementation of Self a dynamically-
typed object-oriented language based on prototypes. SIGPLAN Not., 24(10):49–70, Septem-
ber 1989.

12 Craig Chambers and David Ungar. Customization: optimizing compiler technology for Self,
a dynamically-typed object-oriented programming language. In Proceedings of the 1989
conference on Programming Language Design and Implementation (PLDI), pages 146–160.
ACM New York, June 1989.

13 Craig Chambers and David Ungar. Iterative type analysis and extended message splitting:
Optimizing dynamically-typed object-oriented programs. In Proceedings of the 1990 confer-
ence on Programming Language Design and Implementation (PLDI), pages 150–164. ACM
New York, 1990.

14 Maxime Chevalier-Boisvert and Marc Feeley. Simple and effective type check removal
through lazy basic block versioning. In 29th European Conference on Object-Oriented Pro-
gramming (ECOOP 2015), volume 37 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 101–123. Schloss Dagstuhl, 2015. http://arxiv.org/abs/1411.0352.

15 Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge. Optimizing MATLAB
through just-in-time specialization. In Proceedings of the 2010 international conference on
Compiler Construction (CC), pages 46–65. Springer Berlin Heidelberg, 2010.

16 Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. Static type
inference for Ruby. In Proceedings of the 2009 ACM Symposium on Applied Computing
(SAC), pages 1859–1866. ACM New York, 2009.

17 Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R.
Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruder-
man, Edwin W. Smith, Rick Reitmaier, Michael Bebenita, Mason Chang, and Michael
Franz. Trace-based just-in-time type specialization for dynamic languages. SIGPLAN
Not., 44(6):465–478, June 2009.

18 Andreas Gal, Christian W. Probst, and Michael Franz. HotpathVM: an effective JIT
compiler for resource-constrained devices. In Proceedings of the 2nd international conference
on Virtual Execution Environments (VEE), pages 144–153. ACM New York, 2006.

19 Michael Gorbovitski, Yanhong A. Liu, Scott D. Stoller, Tom Rothamel, and Tuncay K.
Tekle. Alias analysis for optimization of dynamic languages. In Proceedings of the 6th
Symposium on Dynamic Languages, DLS ’10, pages 27–42, New York, NY, USA, 2010.
ACM.

20 David Gudeman. Representing type information in dynamically typed languages, 1993.
21 Brian Hackett and Shu-yu Guo. Fast and precise hybrid type inference for JavaScript. In

Proceedings of the 33rd ACM SIGPLAN conference on Programming Language Design and
Implementation (PLDI), pages 239–250. ACM New York, June 2012.

22 Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In Proceedings of the European Confer-
ence on Object-Oriented Programming, ECOOP ’91, pages 21–38, London, UK, UK, 1991.
Springer-Verlag.

M., Chevalier-Boisvert and M., Feeley 23:23

23 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In
Proceedings of the 16th International Symposium on Static Analysis (SAS), pages 238–255.
Springer Berlin Heidelberg, 2009.

24 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural analysis with
lazy propagation. In Proceedings 17th International Static Analysis Symposium (SAS).
Springer Berlin Heidelberg, September 2010.

25 Vineeth Kashyap, John Sarracino, John Wagner, Ben Wiedermann, and Ben Hardekopf.
Type refinement for static analysis of JavaScript. In Proceedings of the 2013 Dynamic
Languages Symposium (DLS. ACM New York, 2013.

26 Madhukar N. Kedlaya, Jared Roesch, Behnam Robatmili, Mehrdad Reshadi, and Ben
Hardekopf. Improved type specialization for dynamic scripting languages. SIGPLAN Not.,
49(2):37–48, October 2013.

27 Francesco Logozzo and Herman Venter. RATA: rapid atomic type analysis by abstract
interpretation; application to JavaScript optimization. In Proceedings of the 2010 interna-
tional conference on Compiler Construction (CC), pages 66–83. Springer Berlin Heidelberg,
2010.

28 John Plevyak and Andrew A. Chien. Type directed cloning for object-oriented programs. In
Proceedings of the Workshop for Languages and Compilers for Parallel Computing (LCPC),
pages 566–580, 1995.

29 Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. Automated construction
of JavaScript benchmarks. In Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA), pages 677–694, 2011.

30 Gregor Richards, Sylvain Lesbrene, Brian Burg, and Jan Vitek. An analysis of the dynamic
behavior of JavaScript programs. In Proceedings of the ACM Programming Language Design
and Implementation Conference (PLDI), June 2010.

31 Armin Rigo. Representation-based just-in-time specialization and the Psyco prototype for
Python. In Proceedings of the 2004 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation, PEPM ’04, pages 15–26, New York, NY, USA,
2004. ACM.

32 Baptiste Saleil and Marc Feeley. Code versioning and extremely lazy compilation of Scheme.
In Scheme and Functional Programming Workshop, 2014.

33 Henrique Nazare Santos, Pericles Alves, Igor Costa, and Fernando Magno Quintao Pereira.
Just-in-time value specialization. In Proceedings of the 2013 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO), CGO ’13, pages 1–11, Washington,
DC, USA, 2013. IEEE Computer Society.

34 Rodrigo Sol, Christophe Guillon, FernandoMagno Quintão Pereira, and Mariza A.S. Bi-
gonha. Dynamic elimination of overflow tests in a trace compiler. In Jens Knoop, editor,
Proceedings of the 2011 international conference on Compiler Construction (CC), pages
2–21. Springer Berlin Heidelberg, 2011.

35 Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Christian Humer, and
Hanspeter Mössenböck. An object storage model for the Truffle language implementation
framework. In Proceedings of the 2014 International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages, and Tools, pages 133–
144, New York, NY, USA, 2014. ACM.

36 Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and Chris-
tian Wimmer. Self-optimizing AST interpreters. In Proceedings of the 2012 Dynamic
Language Symposium (DLS), pages 73–82. ACM New York, 2012.

CVIT 2016

23:24 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

A Comparison with V8 and SpiderMonkey

Figure 17 compares the speed of Higgs to optimized commercial JavaScript virtual machines.
Higgs is generally slower, sometimes by an order of magnitude. There are a few benchmarks
where it outperforms V8. Notably, bits-in-byte features many function calls, and Higgs
is able to optimize this fairly well. The bitwise-and microbenchmark is also interesting
because it is a loop performing global object property accesses. Higgs outperforms every
JS engine we have tested on this benchmark, suggesting that it has faster global property
accesses, thanks to typed shapes. On the other hand, Higgs is slower everywhere else. This is
probably because Higgs lacks orthogonal optimizations such as: loop-invariant code motion,
global value numbering, bounds check elimination, automatic SIMD vectorization, method
inlining, allocation sinking, floating-point register allocation, etc. In the absence of these
optimizations, BBV is most promising for use in a baseline JIT compiler.

3b
its

-b
yt

e

v8
-ra

yt
ra

ce

de
lta

bl
ue

3d
-m

or
ph

3d
-c

ub
e

ea
rle

y-
bo

ye
r

3d
-ra

yt
ra

ce

fa
nn

ku
ch

sp
ec

tra
l-n

or
m

na
vi

er
-s

to
ke

s

fa
st

a

v8
-c

ry
pt

o

co
rd

ic

ric
ha

rd
s

nb
od

y

cr
yp

to
-m

d5

cr
yp

to
-s

ha
1

bi
na

ry
-tr

ee
s

pa
rti

al
-s

um
s

ns
ie

ve
-b

its

ns
ie

ve

bi
ts

-in
-b

yt
e

sp
la

y

ba
se

64

re
cu

rs
iv

e

bi
tw

is
e-

an
d

ge
o

m
ea

n

1%

10%

100%

1000%
V8 SpiderMonkey

Figure 17 Speed of relative to commercial JS engines (log scale, higher favors Higgs)

CHAPTER 8

ADDITIONAL EXPERIMENTS

This chapter presents a few experiments which were not yet included in publications,

but constitute interesting supplemental material. Chapters 4 to 7 demonstrate that BBV,

despite its conceptual simplicity, is a very powerful technique for eliminating redundant

dynamic type checks. Sections 8.1, 8.2 and 8.3 present three experiments which begin to

explore the use of BBV for applications other than type-specialization. Section 8.4 is an

investigation of the effect of eager and lazy generation of block versions on instruction

cache misses and branch mispredictions. Finally, Section 8.5 looks at the performance

of Higgs and commercial JS engines on a few microbenchmarks.

8.1 Overflow Check Elimination

8.1.1 Problem Description

Most JavaScript implementations use different representations for integer and floating-

point values. The result of this is that operations such as integer addition and multiplica-

tion can potentially overflow, in which case the operands must be converted to floating-

point values. To detect overflows, compilers must insert overflow checks in the generated

code, which incur some code size and execution time penalty.

In the general case, eliminating overflow checks on arithmetic operations is difficult

to achieve. This is because doing so requires having access to information about the

range of numerical values being operated on, so that we can prove that the result of an

addition, for instance, will remain within the range of integers the system can represent.

This information is typically not available for most variables.

It occurred to us, however, that there is a common usage pattern in JavaScript where

overflow checks are not so difficult to eliminate. This is the case where an integer index

value is being incremented in a for loop, an example of which is given in Figure 8.1

The key element in such cases is that the bounds check condition i < arr.length

implies that i can be incremented by one without causing an overflow. This is neces-

sarily the case, because the array length must be an integer (int32). Hence, when this

condition is true, there is necessarily at least one representable integer greater than i,

meaning the i++ operation cannot overflow.

function arraySum(arr)
{

var sum = 0;

for (var i = 0; i < arr.length; ++i)
sum += arr[i];

return sum;
}

Figure 8.1: JavaScript for loop with integer index

Eliminating overflow checks in such loops may appear trivial, but there are multiple

important details involved, such as showing that i remains an integer throughout this

loop. We also note that the optimization is only valid if arr.length is in fact an

integer value. If, for instance, arr was an object and length was a floating-point

value, we could not safely remove the overflow check. Hence, eliminating these checks

requires some kind of type analysis to prove the required invariants and is not a simple

question of pattern matching on ASTs.

8.1.2 The Optimization

Overflow check elimination, in the simple form described just described, which is

able to eliminate overflow checks on array index incrementations, was easily imple-

mented as part of BBV. Two simple additions were needed, and just a handful of lines of

code were changed.

The first necessary component was to enrich our notion of integer types with a one-bit

flag which serves to indicate that an integer value is “submaximal”, that is, that the value

is known to be less than the maximum value representable as an integer in our system.

This flag is automatically set on the true branch of less-than integer comparisons.

130

The second component is the elimination of overflow checks using the newly en-

riched type information. This simply required modifying the code generation for integer

additions not to insert an overflow check when one of the operands has the “submaximal”

flag set and the other operand is the integer one.

This optimization was not implemented when the eager BBV paper [5] was submit-

ted, and was disabled for the ECOOP 2014 lazy BBV article [7], so as to not misrepre-

sent performance gains obtained when using BBV to perform type specialization. It was

enabled for subsequent submissions.

8.1.3 Results

nb
od

y

3d
-c

ub
e

v8
-r

ay
tra

ce

de
lta

bl
ue

co
rd

ic

fa
st

a

ns
ie

ve

fa
nn

ku
ch

3b
its

-b
yt

e

na
vi

er
-s

to
ke

s

ric
ha

rd
s

3d
-r

ay
tra

ce

ns
ie

ve
-b

its

ba
se

64

bi
ts

-in
-b

yt
e

v8
-c

ry
pt

o

3d
-m

or
ph

sp
ec

tra
l-n

or
m

sp
la

y

cr
yp

to
-s

ha
1

ea
rle

y-
bo

ye
r

cr
yp

to
-m

d5

bi
na

ry
-tr

ee
s

pa
rt

ia
l-s

um
s

re
cu

rs
iv

e

bi
tw

is
e-

an
d

ar
ith

m
ea

n

0%

20%

40%

60%

80%

100%

Figure 8.2: Number of overflow checks executed relative to a baseline without overflow
check elimination

To evaluate this optimization, the same 26 benchmarks were used as in Chapter 7.

The graph in Figure 8.2 shows the proportion of overflow checks remaining after the

overflow check elimination was enabled compared to a baseline without this optimiza-

tion. As can be seen, the optimization is very effective, eliminating most of the overflow

checks in benchmarks making heavy use of the for loop iteration pattern relative to

131

other overflow-prone integer operations. On average, 29% of overflow checks are elimi-

nated across our benchmarks.

We note that the bitwise-and microbenchmark, which contains a for loop, does

not show any overflow checks eliminated. This is because this benchmark operates on

global variables. We have made the technical decision of not versioning object shapes

based on the “submaximal” flag.

3b
its

-b
yt

e

re
cu

rs
iv

e

v8
-c

ry
pt

o

cr
yp

to
-s

ha
1

pa
rt

ia
l-s

um
s

ns
ie

ve

ns
ie

ve
-b

its

fa
nn

ku
ch

de
lta

bl
ue

sp
ec

tra
l-n

or
m

co
rd

ic

bi
na

ry
-tr

ee
s

nb
od

y

ric
ha

rd
s

3d
-m

or
ph

bi
tw

is
e-

an
d

cr
yp

to
-m

d5

sp
la

y

3d
-c

ub
e

na
vi

er
-s

to
ke

s

ba
se

64

fa
st

a

v8
-r

ay
tra

ce

ea
rle

y-
bo

ye
r

3d
-r

ay
tra

ce

bi
ts

-in
-b

yt
e

ge
o

m
ea

n

0%

20%

40%

60%

80%

100%

120%

Figure 8.3: Execution time relative to a baseline without overflow check elimination

Enabling overflow check elimination produces a negligible reduction in machine

code size, just 0.1% on average. Figure 8.3 shows the execution time after overflow

check elimination is enabled compared to a baseline without it. Some benchmarks show

speedups and others show a slowdown, but this appears to be due to machine code align-

ment effects.

The optimization, though it does effectively eliminate overflow checks, does not sig-

nificantly affect performance. On most benchmarks, the execution time is unaffected.

We believe this is because overflows almost never occur, and so overflow checks are eas-

ily predicted by modern x86 hardware. There is a possibility that such an optimization

could be relevant on other platforms, or once more significant sources of overhead are

optimized away.

132

Although this optimization is not a success story in terms of performance numbers,

we believe it to be an interesting demonstration that BBV has other potential applications

besides type check elimination.

8.2 Interprocedural Shape Change Tracking

8.2.1 Problem Description

In Chapter 7, we introduced a speculative optimization used to propagate return types

from callees to callers without dynamic dispatch overhead. The technique essentially

predicts future return types of a function and deoptimizes call continuations if this pre-

diction later turns out to be incorrect. We have used a similar strategy in an attempt to

improve the results of intraprocedural object shape propagation (see Chapter 6).

An issue with shape propagation which we have not discussed in much detail is that

of aliasing. In JavaScript, objects are manipulated through references. As such, two

distinct variables can refer to the same object because of pointer aliasing. This means

that the shape of an object referenced by some variable a can change if we perform

property writes on some other variable b that happens to refer to the same object. This

places limitations on shape propagation, because a mutation to one object may cause

known object shapes to become invalidated elsewhere.

In the intraprocedural case, if we know that two object references point to objects

of different shapes, we can trivially infer that these two references do not alias [15],

which is very convenient. Things are more complicated once function calls come into

the picture, however. In general, we do not know which objects may be written to by a

given callee. Furthermore, one function call may produce a deep nesting of subsequent

calls, which may also modify objects. The easy solution is to stop shape propagation as

soon as a function call is encountered, but this is inefficient.

8.2.2 The Optimization

We have implemented a speculative solution similar to the return type prediction

from Chapter 7. A per-function flag serves to indicate whether or not a given function

133

may modify object shapes during its execution. Initially, each function is assumed not to

modify any shapes, but if the function does modify shapes at execution times, this may

result in the deoptimization of call continuations.

Call continuations rely on the shape modification flag to decide whether or not they

should keep known shape information from before the call site. That is, when a callee

may modify object shapes, known shape information at the call site is discarded.

This system is able to get around some of the precision limitations of static analyses.

That is, with a static analysis, it may be difficult to guarantee that a given function

will not call a chain of functions which eventually modify object shapes down the line.

Our speculative system, however, takes run-time behavior into account. Note that no

dynamic checks are involved. The JIT compiler sets the shape modification flag at code

generation time, when object property write code is compiled.

8.2.3 Results

bi
tw

is
e-

an
d

3d
-m

or
ph

sp
ec

tra
l-n

or
m

co
rd

ic

cr
yp

to
-s

ha
1

pa
rt

ia
l-s

um
s

fa
st

a

nb
od

y

v8
-c

ry
pt

o

cr
yp

to
-m

d5

re
cu

rs
iv

e

ric
ha

rd
s

ba
se

64

na
vi

er
-s

to
ke

s

3d
-c

ub
e

bi
na

ry
-tr

ee
s

ns
ie

ve

bi
ts

-in
-b

yt
e

3b
its

-b
yt

e

ns
ie

ve
-b

its

v8
-r

ay
tra

ce

de
lta

bl
ue

ea
rle

y-
bo

ye
r

3d
-r

ay
tra

ce

fa
nn

ku
ch

sp
la

y

ge
o

m
ea

n

0%

20%

40%

60%

80%

100%
no mut. tracking with mut. tracking

Figure 8.4: Shape tests relative to a baseline without shape propagation

Figure 8.4 shows the number of shape tests with and without interprocedural shape

change tracking, both relative to a baseline without shape propagation. A reduction in the

134

number of shape tests is obtained on almost every benchmark. The results are impressive

for some of the smaller benchmarks, but less so for more complex ones.

pa
rt

ia
l-s

um
s

v8
-c

ry
pt

o

fa
st

a

bi
ts

-in
-b

yt
e

cr
yp

to
-m

d5

de
lta

bl
ue

re
cu

rs
iv

e

3d
-r

ay
tra

ce

nb
od

y

ns
ie

ve
-b

its

sp
la

y

bi
tw

is
e-

an
d

fa
nn

ku
ch

v8
-r

ay
tra

ce

3b
its

-b
yt

e

ns
ie

ve

bi
na

ry
-tr

ee
s

na
vi

er
-s

to
ke

s

ea
rle

y-
bo

ye
r

3d
-m

or
ph

sp
ec

tra
l-n

or
m

3d
-c

ub
e

co
rd

ic

ba
se

64

cr
yp

to
-s

ha
1

ric
ha

rd
s

ge
o

m
ea

n

0%

20%

40%

60%

80%

100%

120%

Figure 8.5: Execution time relative to a baseline without shape mutation tracking

In terms of execution time (see Figure 8.5), several benchmarks show a clear dete-

rioration of performance. We suspect that this is because shape change tracking causes

more invalidations, which result in deteriorated code quality. The numbers support this

explanation. Enabling interprocedural shape change tracking multiplies the number of

call continuations invalidated by a factor of six.

When a call continuations is invalidated, a new call continuation may later be recom-

piled. However, this new continuation is generated out of line. That is, recompiled call

continuations break the linear flow of generated machine code, and may cause instruc-

tion cache misses or branch mispredictions. We believe this problem could be addressed

through adaptive recompilation (see Section 9.3).

135

8.3 Versioning and Register Allocation

8.3.1 The Problem

Higgs uses a greedy algorithm to perform register allocation. Register allocation de-

cisions are made on the fly during code generation. When an IR instruction is compiled

to machine code, its operands are allocated registers. This may cause previously allo-

cated values to be spilled onto the stack if no registers are currently free. The greedy

register allocation algorithm is simpler and faster than more sophisticated algorithms

such as graph coloring. It behaves best when the register pressure is small and control

flow is fairly linear.

The main weakness of greedy register allocation is that it has a myopic view of the

code. That is, it makes individual register allocation decisions with limited awareness

of their global impact. One area where performance is often lost is at loop back edges.

The greedy allocator allocates registers for the loop header block when a control flow

edge first enters the loop. Later, a loop back edge jumps back to the loop header, but the

mapping of live variables to registers and stack slots often does not match the allocation

made when first entering the loop.

Transitioning from one register and stack slot assignment to another requires the

introduction of move instructions along the back edge. In other words, several move

instructions may be executed for each loop iteration, which is inefficient. In particular,

moving values from registers to stack slots and vice versa is particularly costly.

8.3.2 The Optimization

We have enabled the versioning of basic blocks based on register allocation state.

This was a very simple modification, requiring the addition of just two lines of code in

the version difference scoring function (see Chapter 5). The two new lines of code are

shown in Figure 8.6. These add a penalty score for each value which would be spilled

(written to the stack) for a given branch edge. The net result of this addition is that new

block versions will be created to avoid spills when possible.

Should a loop back edge have a given variable mapped to a register, and the loop

136

// If this would cause a spill, add a penalty
if (predSt.isReg && succSt.isStack)

diff += 1;

Figure 8.6: Two new lines of code enable versioning based on allocation states

header have the same variable spilled on the stack, the BBV algorithm will try to create

a new loop header block version where the variable is assigned to a register, so long

as the block versioning budget is not exceeded. This scheme can effectively unroll one

or more iterations of a loop so as to try and keep loop variables in registers instead of

writing them to the stack.

8.3.3 Results

ns
ie

ve
-b

its

fa
st

a

3b
its

-b
yt

e

re
cu

rs
iv

e

bi
ts

-in
-b

yt
e

cr
yp

to
-s

ha
1

3d
-c

ub
e

nb
od

y

ba
se

64

sp
la

y

na
vi

er
-s

to
ke

s

cr
yp

to
-m

d5

3d
-m

or
ph

co
rd

ic

fa
nn

ku
ch

bi
na

ry
-tr

ee
s

v8
-c

ry
pt

o

de
lta

bl
ue

sp
ec

tra
l-n

or
m

bi
tw

is
e-

an
d

ns
ie

ve

pa
rt

ia
l-s

um
s

v8
-r

ay
tra

ce

ric
ha

rd
s

ea
rle

y-
bo

ye
r

3d
-r

ay
tra

ce

ge
o

m
ea

n

0%

20%

40%

60%

80%

100%

120%

Figure 8.7: Execution time relative to a baseline without versioning based on register
allocation state

Figure 8.7 shows the execution time with register-based versioning, compared to a

baseline without it. The introduction of this optimization reduces execution time by 4%

on average and 32% in the best case. Notably, the 9 benchmarks which benefit most

from this optimization are all loop-intensive.

137

Register-based versioning causes a code size increase of 0.5% on average and 4.1%

in the worst case.

8.4 BBV and the Instruction Cache

In Chapter 4, we have presented an implementation of BBV which generates block

versions eagerly. This implementation successfully eliminates a large proportion of dy-

namic type tests, but also significantly increases code size, and fails to produce mea-

surable performance improvements. We have speculated that the lack of performance

improvements was due to an increase in instruction cache misses as a result of the in-

creased code size. As of today, most modern CPUs have a relatively small 32KB instruc-

tion cache. Hence, it seems plausible that a code size increase may result in an increase

in the number of instruction cache misses. However, when the CC 2015 and ECOOP

2015 articles were submitted, we had not validated this assumption.

We have set up a comparative experiment to examine the effect of laziness on the

number of instruction cache misses. For this, we have used the perf Linux tool 1, which

gives access to performance counters present in modern CPUs. A version of Higgs which

can be made to generate versions either lazily or completely eagerly was used, as in the

ECOOP 2015 article (see Chapter 5) with maxvers=5. The tests were performed on a

computer equipped with a Core i7-4771 CPU and 16GB of RAM running Ubuntu Linux

14.04. The same 26 benchmarks were used as in the rest of this thesis. Benchmarks were

given one warmup run, and then iterated until there were at least 60 seconds of execution

time, so as to to offset compilation time.

With the aforementioned configuration, completely eager BBV yields a code size

416% larger than lazy BBV on average, and produces code which executes 119% slower

than with lazy versioning. Note that much of the versions produced by eager BBV, al-

though they are generated, are never actually executed. The graph shown in Figure 8.8

shows the relative number of instruction cache misses obtained with the eager configura-

tion compared to lazy BBV. On average, eager BBV yields 254% more instruction cache

1. https://perf.wiki.kernel.org

138

misses. In every case, it increases the number of instruction cache misses, sometimes

drastically.

ns
ie

ve

sp
la

y

ba
se

64

bi
tw

is
e-

an
d

cr
yp

to
-s

ha
1

fa
nn

ku
ch

3b
its

-b
yt

e

re
cu

rs
iv

e

co
rd

ic

ns
ie

ve
-b

its

3d
-m

or
ph

v8
-r

ay
tra

ce

sp
ec

tra
l-n

or
m

bi
ts

-in
-b

yt
e

de
lta

bl
ue

bi
na

ry
-tr

ee
s

cr
yp

to
-m

d5

fa
st

a

3d
-c

ub
e

na
vi

er
-s

to
ke

s

ric
ha

rd
s

ea
rle

y-
bo

ye
r

3d
-r

ay
tra

ce

pa
rt

ia
l-s

um
s

v8
-c

ry
pt

o

nb
od

y

ge
o

m
ea

n

100%

1000%

10000%

100000%

Figure 8.8: Instruction cache misses with eager BBV, relative to lazy BBV

Another advantage of the lazy approach is that it can arrange block versions in mem-

ory based on the order in which they are first executed. This tends to produce more

linear machine code orderings with less jump instructions and less out of line jumps. As

such, it is very likely that eager BBV produces more branch mispredictions than the lazy

approach. We have taken to empirically validating this hypothesis as well.

Figure 8.9 shows the number of branch mispredictions measured with eager BBV rel-

ative to the number measured with lazy versioning. The impact of laziness is not as clear

cut as with instruction cache misses. Some benchmarks, in fact, have less branch mis-

predictions with eager BBV. However, on average, the eager approach results in 128%

more branch mispredictions.

8.5 Microbenchmarks

Figure 8.10 is a comparison of the performance of Higgs against that of V8 version

3.29.66 and SpiderMonkey version C40.0a1 on a few microbenchmarks written by us to

139

ns
ie

ve

sp
ec

tra
l-n

or
m

nb
od

y

ric
ha

rd
s

bi
ts

-in
-b

yt
e

cr
yp

to
-m

d5

ea
rle

y-
bo

ye
r

fa
st

a

ba
se

64

sp
la

y

v8
-r

ay
tra

ce

3b
its

-b
yt

e

bi
na

ry
-tr

ee
s

cr
yp

to
-s

ha
1

de
lta

bl
ue

ns
ie

ve
-b

its

pa
rt

ia
l-s

um
s

3d
-r

ay
tra

ce

fa
nn

ku
ch

re
cu

rs
iv

e

bi
tw

is
e-

an
d

3d
-c

ub
e

v8
-c

ry
pt

o

3d
-m

or
ph

co
rd

ic

na
vi

er
-s

to
ke

s

ge
o

m
ea

n

0%

100%

200%

300%

400%

500%

600%

700%

Figure 8.9: Branch mispredictions with eager BBV, relative to lazy BBV

examine the performance of specific language constructs. The source listings of these

microbenchmarks can be found in Appendix II.

fib44. The fib44 microbenchmark computes the 44th fibonacci number recur-

sively. This benchmark showcases how Higgs is able to optimize global variable ac-

cesses and reflects the performance of the calling convention used by Higgs.

loop-global-incr. The loop-global-incrmicrobenchmark increments a global

variable in a loop, similarly to what is done in bitwise-and, confirming that Higgs

currently has faster global variable accesses than both V8 and SpiderMonkey.

list-sum. We wrote the list-sum-100 microbenchmark to investigate the raw

object property read performance of Higgs. It computes the sum of integer values stored

in nodes of a linked list. On this benchmark, Higgs outperforms V8 by a narrow margin,

but performs slightly worse than SpiderMonkey. However, if we increase the length of

the linked list to 1000, as is done in list-sum-1000, we see that Higgs then performs

worse than both V8 and SpiderMonkey, likely because they use smaller object layouts

which fit better in the L1 CPU cache. This shows that when a program is memory bound,

machine code quality is not the only relevant factor.

140

lo
op

-g
lo

ba
l-i

nc
r

lis
t-s

um
-1

00
0

lis
t-s

um
-1

00

fib
44

10
0m

-fo
r-

in

0%

50%

100%

150%

200%

250%

300%
V8 SpiderMonkey

Figure 8.10: Speedup of Higgs over V8 and SpiderMonkey (higher favors Higgs)

100m-for-in. Finally, the 100m-for-in microbenchmark showcases the perfor-

mance of Higgs when iterating over object property names in a for-in loop. We have

spent considerable time optimizing the performance of this specific language feature in

order to reduce the performance disadvantage of Higgs on the fasta benchmark, and

came to develop a more efficient implementation than both V8 and SpiderMonkey. This

microbenchmark demonstrates the power of micro-optimizations. Perhaps V8 and Spi-

derMonkey outperform Higgs on average because they have had years to develop a wide

range of micro-optimizations which Higgs does not yet possess.

8.6 Summary

This chapter presents a set of yet unpublished experiments with interesting results.

Three of these investigate the potential of the BBV technique in areas not directly related

to dynamic type check elimination.

Our first experiment explores the use of BBV to perform some basic overflow check

elimination. Although no measurable speedups are obtained, we consider this exper-

iment successful, as a large proportion of overflow checks are eliminated, with only

141

small changes required to the Higgs implementation to enable this.

The second experiment is an implementation of the interprocedural tracking of shape

changes using a speculative deoptimization mechanism. The approach is successful in

terms of eliminating dynamic shape tests. However, the performance is unfortunately

slightly degraded. This is likely a limitation of the current implementation, which could

be addressed using adaptive recompilation (see Section 9.3).

The last experiment in extending BBV explores versioning based on register alloca-

tion states. With only some trivial modifications to the Higgs source code, we are able

to achieve large speedups on several benchmarks.

Also included in this chapter is an investigation of the effect of eager and lazy gener-

ation of block versions on instruction cache misses and branch mispredictions. Empir-

ical results show that eagerly generating block versions leads to more instruction cache

misses on every benchmark, and that the difference can be dramatic in some cases. This

supports the hypothesis that instruction cache misses are the main reason why we were

unable to obtain performance improvements with eager BBV.

Finally, we tested the performance of Higgs, V8 and SpiderMonkey on a few mi-

crobenchmarks of our own design. We showed that Higgs does outperform both JS

engines in specific instances. This is also a demonstration that the overall performance

of a JS VM depends on many orthogonal micro-optimizations.

142

CHAPTER 9

FUTURE WORK

Over the last few years, I have had time to think about potential avenues of future

research. Several of these are enumerated in the following subsections, starting with

those I believe to be the most promising. I believe that with some or all of the following

enhancements, BBV could be made to shine even more.

9.1 Incremental Inlining

Inlining is one of the most important optimizations a compiler can perform. It is

crucial for maximum performance, particularly in modern object-oriented or functional

languages where many small functions are used. I strongly believe that an important

direction to explore in future work would be the extension of BBV with incremental

inlining. That is, the ability to inline callees one basic block at a time, as a natural

extension to the versioning process.

Currently, Higgs uses simple heuristics to inline a fixed set of runtime primitives, but

does not inline regular function calls. The inlining of runtime functions is very costly,

both in terms of memory and time, as it requires the entire AST of callees to be copied

and inserted into the caller. Because runtime primitives are generic and must deal with

multiple input types, much of the inlined code ends up never being executed, making the

entire process wasteful.

TraceMonkey is still very competitive with V8 on some benchmarks. Its power lies in

its capacity for deep inlining. Augmenting BBV with incremental inlining could allow

speculative and deep inlining of calls, making the technique much more competitive,

both in terms of execution time and compilation time. Only the basic blocks inside a

callee that are executed in the inlining context would be processed, meaning the inlining

process itself would be faster.

9.2 Multi-Stage Fallback

The current implementation of Higgs has a maximum number of versions that may

be generated for any given block, the maxvers parameter. When this limit is hit, a

generic version is generated, with all type information eliminated. The generic version

is guaranteed to be compatible with any incoming types.

Conceivably, instead of generating a generic version right away, a first generic ver-

sion could be generated which only removes the type information that differs between

previously requested versions, but keeps the types that remain the same. In most cases,

it is likely that one or maybe two types are highly polymorphic and causing the version

limit to be hit, but most of the known type information remains the same.

By generating a “compatible” but not fully generic version for fallback, much of

the known type information could be preserved, allowing the system a form of graceful

degradation. In the rare case where further incompatible versions are requested past the

version limit, a truly generic version can be produced as before.

Multiple variations on this scheme are possible, such as the use of a gradual degrada-

tion scheme where the version limit is set to a low value, such as 3, and each new version

requested removes information about the live value causing a mismatch.

9.3 Adaptive Recompilation

In general, the more specific the type information propagated, the more pressure is

placed on the BBV scheme. Some values, such as object shapes, are sometimes dispro-

portionately polymorphic. For instance, while most local variable types have only one

or sometimes two possible type tags, object references can easily have 5 or 15 possi-

ble object shapes in some cases. These highly polymorphic values are usually the ones

causing the version limit to be hit.

Paradoxically, type information about megamorphic values is probably not worth

propagating. If a value can have a large number of different types, then trying to create

many different versions to propagate all these types will, in all likelyhood, result in

unnecessary instruction cache pressure and have us hit the version limit faster. The

144

goal of BBV is not to create many versions, but to propagate useful type information

effectively.

We have already shown in Chapter 7 that it is easy to invalidate and recompile block

versions by turning them back into stubs. I would argue that when the block limit is hit

for a given version, or when a function has too many versions, the ideal strategy may be

to throw away some or all of this code and lazily recompile it.

Throwing away block versions could allow us to “un-propagate” some type infor-

mation. For instance, when a given value which is found to be megamorphic, it may

not be worth propagating more than one type for this value. It might be best, in fact,

not to propagate any type information at all in some cases. Such a strategy could allow

BBV to better deal with pathological cases and to better scale to larger, more complex

programs. A strategy for “un-propagating” information about megamorphic values also

paves the way for the propagation of more precise information. For instance, we may

wish to enable BBV to propagate numerical ranges or even constants.

9.4 Adaptive Ordering of Type Tag Tests

BBV exploits the type tag tests already present in runtime primitive functions to

extract type information. When type information is already known as part of the ver-

sioning context, redundant type tests can be eliminated. One weakness of the current

approach, however, is that type tests are executed in a specific sequence, which is fixed

and specified by the source code of primitive functions.

Consider the $rt_toString runtime primitive function listed in Figure I.2 of Ap-

pendix I. The type tag of the input value v is tested in a fixed sequence of type tag

test instructions. When the type of v is known, the code generation can eliminate all

redundant clauses and skip directly to the correct one, producing efficient code.

The weakness of this approach, however, is that when the type of v is unknown, mul-

tiple type tags tests may be executed before the correct type tag is found. For instance,

if a boolean value was passed as argument, all other possible type tags would be tested

before the correct one is found. This is highly inefficient.

145

Runtime primitives often perform this kind of dispatching based on type tags. To

improve the performance of such type-based dispatch, a smarter solution may be to

implement a kind of switch or dispatch statement which can dispatch to the correct

operations based on type tags. The key difference here, would be that unlike a cascade

of switch statements, there would be no implicit ordering between the different clauses.

To generate code for such a statement, the JIT compiler could lazily generate type

tag tests based on the values encountered during execution. This means that value tags

which are never encountered would never be tested for. The main heuristic this idea

relies on is that values which are more frequent are more likely to be encountered first.

9.5 Propagating Facts instead of Types

In Chapter 8, we explored a few ways in which BBV can be used for optimizations

that go beyond eliminating type tests. In order to truly exploit the power of BBV, it may

be desirable to generalize the BBV architecture. In particular, there is a need to represent

more detailed information about values.

In the current system, each value has one possible type tag and one possible known

shape. One can imagine propagating more precise type information, such as sets of

possible type tags, numerical constants, numerical ranges, string constants, etc. Going

even further, it may be interesting to think of associating values with arbitrary sets of

known facts linked by logical conjunctions, disjunctions and negations.

A more flexible system using logical connectives would allow us to know that a spe-

cific value has two possible types, and also to propagate negative information, that is,

that a given value does not have a given type. Certainly, propagating large tree struc-

tures representing type information about a value could easily become unwieldy, but if

these trees were immutable, they could be shared, and compared for equality with a sim-

ple pointer comparison. I believe that a richer value representation such as this can be

optimized for performance without much difficulty.

146

9.6 Array Specialization

Because JS code makes extensive use of objects, we have made considerable efforts

to optimize object property accesses in Higgs, with great success. However, one obvious

limitation of the current system is that it does not introspect array element types. Arrays

are simply seen as black boxes containing values of unknown types. Optimizing array

element accesses would enable BBV to eliminate even more type tests.

PyPy [3] and V8 [12] already implement strategies to optimize both the in-memory

layout and the dynamic overhead of arrays containing only integers or only floating-

point numbers, which is a common use case. They do this by implementing specialized

storage strategies (backing stores) for these specific kinds of arrays.

BBV could conceivably be extended to discover and propagate information about

array value types. In Chapter 6, we have shown how the notion of types used by BBV can

be extended to accomodate for the concept of typed object shapes. A similar extension

could be made to propagate information about array element types. This would make

it possible to say that a given value is an array containing elements of one or multiple

types, and specialize generated machine code in consequence.

9.7 Array Bounds Check Elimination

Section 8.1 explains how BBV can be extended to eliminate overflow checks associ-

ated with array index incrementations. This optimization propagates a one bit flag telling

us that an integer index value can be incremented without overflow. The flag propagates

from the loop test condition (usually of the form i < arr.length) to the index in-

crementation operation (usually of the form i++), allowing the elimination of overflow

checks.

The representation of types used by BBV could be enriched to propagate more de-

tailed facts (see Section 9.5) arising out of comparison operations. For instance, instead

of propagating just one bit indicating that an integer index value is submaximal, we could

directly propagate the fact that the index is non-negative and less than the length of some

specific array. Propagating this information to array access operations would allow us to

147

eliminate array bounds checks.

There are some obvious complication here, in that that arrays are both mutable and

subject to aliasing. As such, a fact stating that some index is within the bounds of an

array can become invalid if the length of the array is reduced through other aliases. An

easy solution to this problem is to simply discard such facts if any array has its length

changed, or if any (non-inlined) function is called. A speculative deoptimization strategy

such as that presented in Section 8.2 could potentially be used to speculate that callees

will not shrink the length of any arrays.

9.8 Closure Variable Awareness

Another gap in the current system is that it does not introspect variables captured by

closures (free variables). I believe that one possible approach to this problem may be

to represent closures as objects, and captured variables as object properties. This would

allow exploiting already existing typed shape mechanisms (see Chapter 6) to propagate

information about captured variable types.

9.9 Allocation Sinking

Dynamic language implementations such as PyPy and LuaJIT perform an optimiza-

tion known as allocation sinking [2]. This optimization is meant to avoid allocating

temporary objects which are then freed shortly after. In tracing JITs, the optimization

replaces an object allocation inside of a trace by a set of temporary variables represent-

ing its individual fields. These temporary variables can later be materialized into a real

object allocation if control flow exits the trace and the object is still alive at the trace exit.

This optimization is particularly easy to implement in tracing JITs, but should be

feasible to implement in a BBV system by essentially delaying object allocations, and

indicating in the versioning context that the objects are stored in temporary values. The

objects could then be materialized when some specific condition occurs, such as a return

statement, or simply never allocated when this is possible.

I believe that allocation sinking would be particularly beneficial for functional code.

148

In such code, many temporary closure objects (and corresponding closure cells) are al-

located. By combining allocation sinking with incremental inlining, it may be possible

to optimize functional constructs such as map and forEach loops and make them as

efficient as ordinary for loops.

9.10 Lazy, Deferred Computations

Some conference reviewers, upon seeing the early work on lazy BBV (see Chap-

ter 5), have expressed doubts about its ability to compete with trace compilation. Traces

are long linear segments of code which are easy to analyze and optimize in various ways.

In contrast, BBV is a localized approach, which seems myopic, and fundamentally more

limited in terms of optimization capabilities. For instance, it is easy to remove redun-

dant computations from traces by moving them onto side-exits. How can BBV achieve

the same thing, given that it knows nothing, when compiling a given block, about what

computations will be happening in other basic blocks?

Partial allocation sinking (Section 9.9), is a technique that delays temporary alloca-

tions until we know they are really needed. This is an effective technique to eliminate

unnecessary allocations. I believe that partial allocation sinking could be implemented

in a BBV system by making values as deferred allocations in the versioning context.

The idea of deferred allocations could, in theory, be generalized to that of deferred

computations. The idea would be to avoid performing a computation until we know

its value is actually needed, or until we are forced by some boundary condition (e.g.

side-effects) to perform the computation. The versioning context could represent values

as trees of IR instructions to be evaluated. These trees would then be materialized into

machine code when a return statement or a store to memory is encountered.

Deferred computations would make it possible for BBV to eliminate redundant com-

putations, reorder instructions, and to perform higher-level optimizations such as opti-

mizing successive object property reads. This approach may also enable better register

allocation over larger sequences of instructions. One potential issue with this approach

is that multiple paths through the control flow graph may end up performing the same

149

computation which could have been performed earlier, leading to code bloat. This prob-

lem, if it really is one in practice, could be alleviated by using adaptive recompilation

(Section 9.3).

9.11 IR-level versioning

BBV, as presented in this thesis, is a technique that operates in a JIT compiler’s

backend and generates multiple versions of machine code corresponding to a given basic

block at the IR level. Another possible approach would be to do versioning directly in

the compiler IR. The compiler would then generate new type-annotated basic blocks in

the IR itself.

One obvious advantage is that this would allow the compiler to perform higher-

level transformations on the code. For instance, the current implementation of BBV

cannot optimize successive object property reads effectively (e.g. a = o.v.x; b =

o.v.y). In a system where IR nodes are allocated with object shapes, such an optimiza-

tion becomes much simpler to implement.

Another advantage of IR-level versioning would be that by versioning at the IR level,

it may be possible to represent versioning states more compactly than is currently done

in the Higgs backend, by annotating the IR nodes.

9.12 Fragment Optimization

BBV interleaves compilation and execution. The technique makes use of stubs to

detect which branch edges of a conditional branch are executed at run time. However,

BBV is not limited to compiling one single basic block at a time. When encountering

unconditional jumps, or branches whose direction can be determined at code generation

time (e.g. type tests on variables whose type is known), BBV will compile multiple block

in a linear sequence.

Since BBV can eliminate the large majority of type tests in a program (see Section 7),

the compilation of long sequences of basic blocks is quite common in practice. This

could be an opportunity to implement a mechanism to optimize multiple basic blocks

150

at a time. Multiple blocks chained together form what we might term a “fragment”, a

sequence of instructions which must execute linearly, with a single exit at the end.

Instead of generating code for individual basic blocks directly in one pass, BBV

could first do a type propagation pass with the purpose of determining how far a given

fragment extends, that is, establishing how many consecutive branches are determined at

code generation time. Then, a second pass could perform analyses and transformations

at the IR level on the blocks which are part of the fragment.

Fragment optimization has obvious similarities with trace compilation, in that a frag-

ment can be seen as a short trace without side exits. It has similar benefits as IR-level

versioning (see 9.11), in that it allows optimizing higher-level constructs, such as con-

secutive object property accesses. Other benefits include the possibility of performing

more sophisticated register allocation.

9.13 Garbage Collector Optimizations

It may be possible to optimize memory allocation and garbage collection using BBV.

Systems which use a moving GC perform a check to verify if an object to be allocated

will fit within the current heap. This check is typically performed at every allocation.

With BBV, it may be possible to perform this check once for a small chunk of memory

that can contain multiple objects. BBV can then be used to keep track, at code genera-

tion time, of how much space remains in the chunk. Essentially performing part of the

allocation work at code generation time.

9.14 IR Performance Optimizations

Early on in the design of Tachyon and Higgs, we have made the choice to go for

simplicity and maintainability in the implementation. Higgs is able to generate efficient

machine code, but it was not optimized for fast compilation times. The data structures

used to represent the IR and associated metadata are intended to be easy to manipulate

and modify.

V8, in contrast, has been thoroughly optimized for fast compilation times. Whereas

151

Higgs uses the D GC to allocate ASTs and IR nodes, V8 uses a custom memory allocator

called a “zone”. These are flat arrays of bytes to which new objects are appended. One

or more zones are associated with a given function, and all of the contents of one zone

are deallocated at once when the function is no longer live.

In order to compete with V8 and SpiderMonkey on absolute compilation times,

Higgs would need optimizations such as zones, as well as many other micro-optimizations.

9.15 Summary

In this chapter, I have outlined several potential improvements to the BBV technique

which I deem to be interesting directions for future research.

There are, in my opinion, several “low-hanging fruits” which are very likely to pay

off and require only small or moderate implementation effort. These are array special-

ization, closure variable awareness, multi-stage fallback and adaptive ordering of type

tag tests. Array specialization and closure variable awareness address obvious limita-

tions of the present work by enabling BBV to associate type information with language

constructs which are not explicitly handled by the current system. Multi-stage fallback

and adaptive ordering of type tag tests are promising improvements to the BBV tech-

nique which are almost guaranteed to produce better results in terms of type tag tests

eliminated.

Incremental inlining, IR-level versioning and adaptive recompilation are significant

time investments, but may allow BBV to get much closer to the performance levels of

state of the art JS VMs. The current system needs a way to perform method inlining.

Incremental inlining is an approach to this problem which meshes nicely with the BBV

architecture, and is likely to reduce both execution and compilation times. IR-level ver-

sioning would allow a BBV compiler to perform high-level optimizations which are

currently impractical to implement. Adaptive recompilation may allow BBV to propa-

gate more precise type information while also guaranteeing that the approach scales to

larger and more complex programs.

152

CHAPTER 10

CONCLUSION

This thesis is an initial exploration of BBV, an alternative JIT compilation strat-

egy which aims to reach a good tradeoff between compiler architecture complexity and

performance of the generated machine code. BBV uses the systematic versioning and

specialization of individual basic blocks as a mechanism to accumulate and propagate

contextual information. The technique optimizes code on the fly and in a single pass as

it is generated, without the use of traditional program analysis techniques.

The first part of this thesis (Chapter 4) investigates an eager, intraprocedural form of

BBV which attempts to generates all block versions for a given method at once, until a

per-block version limit is reached. The approach is shown to be effective for eliminating

redundant dynamic type checks which are part of the implicit semantics of dynamic

programming languages. In our empirical tests, eager BBV is able to eliminate 64% of

dynamic type checks on average, about twice as much as a fixed-point intraprocedural

type propagation analysis. It also has much lower compilation time overhead. However,

this strategy does not produce measurable performance improvements because eager

versioning generates many block versions which are never actually executed, resulting

in large machine code size increases.

Eager BBV generates more basic block versions than necessary because it is unable

to effectively determine, at method compilation time, which versions are likely to be

executed and which are not. As such, it must overapproximate the set of necessary

block versions. Instead of relying on heuristics or trying to approximate this information

using profiling techniques, we chose to explore the possibility of generating basic block

versions lazily, on the fly (Chapter 5).

Lazy BBV uses machine code stubs to delay the generation of block versions until

they are first executed. In this way, it is able to incrementally generate exactly the set of

block versions necessary at run time. Using stubs and code patching, we implement this

technique in a way that produces efficient linear sequences of machine code without un-

necessary jump instructions. By avoiding the generation of superfluous block versions,

lazy BBV eliminates the code size bloat problem. Because it makes a better targeted

use of the versioning budget, lazy BBV is also able to eliminate more type tests than

the eager approach, 71% on average, and to deliver significant speedups compared to a

system without BBV.

The basic BBV approach has no mechanism to attach property types to object prop-

erties. As a result, dynamic type tests are performed for almost every object property

read. Since JS is an object-oriented language, and global variables are properties of

the global object, the resulting overhead is significant. We devise a mechanism, which

we refer to as typed object shapes, for attaching type information (including method

identities) to object properties as part of the existing object shape metadata (Chapter 6).

This mechanism is integrated with BBV by allowing the versioning scheme to capture

and propagate object shapes. With typed shapes, the extended BBV system is able to

eliminate more dynamic type checks than the plain intraprocedural approach, 79% on

average, resulting in further performance improvements.

The intraprocedural BBV approach sees function calls as black boxes. That is, func-

tion parameters and return values are treated as variables of unknown type. This results

in many redundant dynamic type checks being performed, particularly in recursive func-

tions. We devise two separate mechanisms to propagate type information across function

call boundaries (Chapter 7). Entry point specialization uses method identity information

provided by typed shapes to pass argument types to specialized function entry points

without dynamic dispatch. Call continuation specialization is a speculative strategy to

pass return value types back to callers without dynamic overhead.

By combining lazy BBV, typed object shapes and the interprocedural extensions, we

are able to eliminate 94.3% of dynamic type checks, on average, across our benchmark

suite. We empirically show that BBV outperforms an idealized whole-program static

type analysis with access to perfect information.

Finally, in Chapter 8, we show that BBV is usable for things other than type spe-

cialization. Because of its conceptual simplicity, BBV can be easily extended in various

ways to incorporate new optimization capabilities. There are many possible avenues to

154

be explored (Chapter 9). Applications to other domains, extensions to make the tech-

nique more powerful as well as algorithmic refinements to improve the scalability of

BBV while exploiting more opportunities for optimization. The work we present here is

only scratching the surface of what is possible.

Compiler architecture is a very large problem space. There are many ways to design

a compiler, each with unique tradeoffs. While commercial JS engines are unlikely to

switch to BBV-based architectures overnight, it is our belief that code versioning with

sub-method granularity is bound to eventually make its way into mainstream dynamic

language VMs, in one form or another, as it is able to eliminate dynamic overhead un-

touched by traditional type analysis techniques.

155

BIBLIOGRAPHY

[1] Alan Bawden, Richard Greenblatt, Jack Holloway, Thomas Knight, David Moon,

and Daniel Weinreb. LISP machine progress report. August 1977. URL http:

//dspace.mit.edu/handle/1721.1/5751.

[2] Carl Friedrich Bolz, Antonio Cuni, Maciej FijaBkowski, Michael Leuschel,

Samuele Pedroni, and Armin Rigo. Allocation removal by partial evaluation in

a tracing JIT. In Proceedings of the 20th ACM SIGPLAN workshop on Partial

Evaluation and Program Manipulation, pages 43–52. ACM, 2011.

[3] Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. Storage strategies for

collections in dynamically typed languages. In Proceedings of the 2013 ACM SIG-

PLAN International Conference on Object Oriented Programming Systems Lan-

guages & Applications, OOPSLA ’13, pages 167–182, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-2374-1. doi: 10.1145/2509136.2509531. URL

http://doi.acm.org/10.1145/2509136.2509531.

[4] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of SELF, a

dynamically-typed object-oriented language based on prototypes. In Conference

Proceedings on Object-Oriented Programming Systems, Languages and Applica-

tions, OOPSLA ’89, pages 49–70, New York, NY, USA, 1989. ACM. ISBN 0-

89791-333-7. doi: 10.1145/74877.74884. URL http://doi.acm.org/10.

1145/74877.74884.

[5] Maxime Chevalier-Boisvert and Marc Feeley. Removing dynamic type tests with

context-driven basic block versioning. CoRR, abs/1401.3041, 2014. URL http:

//arxiv.org/abs/1401.3041.

[6] Maxime Chevalier-Boisvert and Marc Feeley. Interprocedural type specialization

of JavaScript programs without type analysis. CoRR, abs/1511.02956, 2015. URL

http://arxiv.org/abs/1511.02956.

http://dspace.mit.edu/handle/1721.1/5751
http://dspace.mit.edu/handle/1721.1/5751
http://doi.acm.org/10.1145/2509136.2509531
http://doi.acm.org/10.1145/74877.74884
http://doi.acm.org/10.1145/74877.74884
http://arxiv.org/abs/1401.3041
http://arxiv.org/abs/1401.3041
http://arxiv.org/abs/1511.02956

[7] Maxime Chevalier-Boisvert and Marc Feeley. Simple and effective type check

removal through lazy basic block versioning. In 29th European Conference on

Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech

Republic, pages 101–123, 2015. doi: 10.4230/LIPIcs.ECOOP.2015.101. URL

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.101.

[8] Maxime Chevalier-Boisvert and Marc Feeley. Extending basic block versioning

with typed object shapes. CoRR, abs/1507.02437, 2015. URL http://arxiv.

org/abs/1507.02437.

[9] Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge. Optimiz-

ing MATLAB through just-in-time specialization. In Proceedings of the 19th

Joint European Conference on Theory and Practice of Software, International

Conference on Compiler Construction, CC’10/ETAPS’10, pages 46–65, Berlin,

Heidelberg, 2010. Springer-Verlag. ISBN 3-642-11969-7, 978-3-642-11969-9.

doi: 10.1007/978-3-642-11970-5_4. URL http://dx.doi.org/10.1007/

978-3-642-11970-5_4.

[10] Maxime Chevalier-Boisvert, Erick Lavoie, Marc Feeley, and Bruno Dufour. Boot-

strapping a self-hosted research virtual machine for JavaScript: An experience re-

port. In Proceedings of the 7th Symposium on Dynamic Languages, DLS ’11,

pages 61–72, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0939-4.

doi: 10.1145/2047849.2047858. URL http://doi.acm.org/10.1145/

2047849.2047858.

[11] Alonzo Church. An unsolvable problem of elementary number theory. American

Journal of Mathematics, 58(2):345–363, April 1936. ISSN 00029327. doi: 10.

2307/2371045. URL http://dx.doi.org/10.2307/2371045.

[12] Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer. Memento

mori: Dynamic allocation-site-based optimizations. In Proceedings of the 2015

ACM SIGPLAN International Symposium on Memory Management, ISMM 2015,

pages 105–117, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3589-8.

157

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.101
http://arxiv.org/abs/1507.02437
http://arxiv.org/abs/1507.02437
http://dx.doi.org/10.1007/978-3-642-11970-5_4
http://dx.doi.org/10.1007/978-3-642-11970-5_4
http://doi.acm.org/10.1145/2047849.2047858
http://doi.acm.org/10.1145/2047849.2047858
http://dx.doi.org/10.2307/2371045

doi: 10.1145/2754169.2754181. URL http://doi.acm.org/10.1145/

2754169.2754181.

[13] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Conference

Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM

Press, New York, NY.

[14] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the

Smalltalk-80 system. In Proceedings of the 11th ACM SIGACT-SIGPLAN Sympo-

sium on Principles of Programming Languages, POPL ’84, pages 297–302, New

York, NY, USA, 1984. ACM. ISBN 0-89791-125-3. doi: 10.1145/800017.800542.

URL http://doi.acm.org/10.1145/800017.800542.

[15] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based alias anal-

ysis. SIGPLAN Notices, 33(5):106–117, May 1998. ISSN 0362-1340. doi:

10.1145/277652.277670. URL http://doi.acm.org/10.1145/277652.

277670.

[16] Andreas Gal, Christian W. Probst, and Michael Franz. HotpathVM: an effective

JIT compiler for resource-constrained devices. In Proceedings of the 2nd Interna-

tional Conference on Virtual Execution Environments, VEE ’06, pages 144–153,

New York, NY, USA, 2006. ACM. ISBN 1-59593-332-8. doi: 10.1145/1134760.

1134780. URL http://doi.acm.org/10.1145/1134760.1134780.

[17] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mo-

hammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason Oren-

dorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita, Ma-

son Chang, and Michael Franz. Trace-based just-in-time type specialization for

dynamic languages. In Proceedings of the 30th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’09, pages 465–478, New

158

http://doi.acm.org/10.1145/2754169.2754181
http://doi.acm.org/10.1145/2754169.2754181
http://doi.acm.org/10.1145/800017.800542
http://doi.acm.org/10.1145/277652.277670
http://doi.acm.org/10.1145/277652.277670
http://doi.acm.org/10.1145/1134760.1134780

York, NY, USA, 2009. ACM. ISBN 978-1-60558-392-1. doi: 10.1145/1542476.

1542528. URL http://doi.acm.org/10.1145/1542476.1542528.

[18] David Gudeman. Representing type information in dynamically typed languages.

Technical Report TR 93-27, The University of Arizona. Department of Computer

Science., Tucson, AZ 85721, USA, October 1993. URL http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.39.4394.

[19] Brian Hackett and Shu-yu Guo. Fast and precise hybrid type inference for

JavaScript. In Proceedings of the 33rd ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI ’12, pages 239–250, New

York, NY, USA, 2012. ACM. ISBN 978-1-4503-1205-9. doi: 10.1145/2254064.

2254094. URL http://doi.acm.org/10.1145/2254064.2254094.

[20] Urs Hölzle and David Ungar. Optimizing dynamically-dispatched calls with run-

time type feedback. In Proceedings of the ACM SIGPLAN 1994 Conference on

Programming Language Design and Implementation, PLDI ’94, pages 326–336,

New York, NY, USA, 1994. ACM. ISBN 0-89791-662-X. doi: 10.1145/178243.

178478. URL http://doi.acm.org/10.1145/178243.178478.

[21] Urs Hölzle and David Ungar. Reconciling responsiveness with performance in

pure object-oriented languages. ACM Transactions on Programming Languages

and Systems (TOPLAS), 18(4):355–400, July 1996. ISSN 0164-0925. doi:

10.1145/233561.233562. URL http://doi.acm.org/10.1145/233561.

233562.

[22] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed

object-oriented languages with polymorphic inline caches. In Proceedings of the

European Conference on Object-Oriented Programming, ECOOP ’91, pages 21–

38, London, UK, UK, 1991. Springer-Verlag. ISBN 3-540-54262-0. URL http:

//dl.acm.org/citation.cfm?id=646149.679193.

[23] Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code with

159

http://doi.acm.org/10.1145/1542476.1542528
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.4394
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.4394
http://doi.acm.org/10.1145/2254064.2254094
http://doi.acm.org/10.1145/178243.178478
http://doi.acm.org/10.1145/233561.233562
http://doi.acm.org/10.1145/233561.233562
http://dl.acm.org/citation.cfm?id=646149.679193
http://dl.acm.org/citation.cfm?id=646149.679193

dynamic deoptimization. In Proceedings of the ACM SIGPLAN 1992 conference on

programming language design and implementation, PLDI ’92, pages 32–43, New

York, NY, USA, 1992. ACM. ISBN 0-89791-475-9. doi: 10.1145/143095.143114.

URL http://doi.acm.org/10.1145/143095.143114.

[24] ECMA International. ECMA-262: ECMAScript Language Specification. European

Association for Standardizing Information and Communication Systems (ECMA),

Geneva, Switzerland, fifth edition, 2009.

[25] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for

JavaScript. In Proceedings of the 16th International Symposium on Static Anal-

ysis (SAS), pages 238–255. Springer Berlin Heidelberg, 2009.

[26] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural anal-

ysis with lazy propagation. In Proceedings of the 17th International Conference

on Static Analysis, SAS’10, pages 320–339, Berlin, Heidelberg, 2010. Springer-

Verlag. ISBN 3-642-15768-8, 978-3-642-15768-4. URL http://dl.acm.

org/citation.cfm?id=1882094.1882114.

[27] Alan C. Kay. The early history of Smalltalk. In History of programming

languages—II, pages 511–598. ACM, 1996. ISBN 0-201-89502-1. URL http:

//portal.acm.org/citation.cfm?id=1057828.

[28] Thomas Kotzmann and Hanspeter Mössenböck. Escape analysis in the context of

dynamic compilation and deoptimization. In Proceedings of the 1st ACM/USENIX

International Conference on Virtual Execution Environments, VEE ’05, pages 111–

120, New York, NY, USA, 2005. ACM. ISBN 1-59593-047-7. doi: 10.1145/

1064979.1064996. ACM ID: 1064996.

[29] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Mas-

ter’s thesis, Computer Science Department, University of Illinois at Urbana-

Champaign, Urbana, IL, Dec 2002. URL http://llvm.org/pubs/

2005-05-04-LattnerPHDThesis.html.

160

http://doi.acm.org/10.1145/143095.143114
http://dl.acm.org/citation.cfm?id=1882094.1882114
http://dl.acm.org/citation.cfm?id=1882094.1882114
http://portal.acm.org/citation.cfm?id=1057828
http://portal.acm.org/citation.cfm?id=1057828
http://llvm.org/pubs/2005-05-04-LattnerPHDThesis.html
http://llvm.org/pubs/2005-05-04-LattnerPHDThesis.html

[30] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Life-

long Program Analysis & Transformation. In Proceedings of the 2004 Interna-

tional Symposium on Code Generation and Optimization (CGO’04), pages 75–,

Palo Alto, California, Mar 2004. ISBN 0-7695-2102-9. URL http://dl.acm.

org/citation.cfm?id=977395.977673.

[31] John McCarthy. Recursive functions of symbolic expressions and their computa-

tion by machine, part one. Communications of the ACM, 3(4):184–195, April 1960.

ISSN 0001-0782. doi: 10.1145/367177.367199. URL http://doi.acm.org/

10.1145/367177.367199.

[32] Robin Milner. A theory of type polymorphism in programming. Journal of com-

puter and system sciences, 17(3):348–375, 1978.

[33] Baptiste Saleil and Marc Feeley. Type check removal using lazy interprocedural

code versioning. In Scheme and Functional Programming Workshop, 2015.

[34] C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull, and D. R. Boggs.

Alto: A personal computer. Technical Report CSL-79-11, Xerox Corporation,

August 1979.

[35] David Ungar and Randall B Smith. Self: The power of simplicity. ACM SIGPLAN

Notices, 22:227–242, December 1987. ISSN 0362-1340. doi: 10.1145/38807.

38828. ACM ID: 38828.

[36] David Ungar, Craig Chambers, and Bay-wei Chang. Organizing programs with-

out classes. Lisp and Symbolic Computation, 4:223–242, 1991. doi: 10.1.1.

56.8715. URL http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.56.8715.

[37] Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Christian Humer,

and Hanspeter Mössenböck. An object storage model for the Truffle language im-

plementation framework. In Proceedings of the 2014 International Conference

161

http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
http://doi.acm.org/10.1145/367177.367199
http://doi.acm.org/10.1145/367177.367199
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.8715
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.8715

on Principles and Practices of Programming on the Java Platform: Virtual Ma-

chines, Languages, and Tools, PPPJ ’14, pages 133–144, New York, NY, USA,

2014. ACM. ISBN 978-1-4503-2926-2. doi: 10.1145/2647508.2647517. URL

http://doi.acm.org/10.1145/2647508.2647517.

[38] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon,

and Christian Wimmer. Self-optimizing AST interpreters. In Proceedings of the

8th Symposium on Dynamic Languages, DLS ’12, pages 73–82, New York, NY,

USA, 2012. ACM. ISBN 978-1-4503-1564-7. doi: 10.1145/2384577.2384587.

URL http://doi.acm.org/10.1145/2384577.2384587.

[39] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Du-

boscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One

vm to rule them all. In Proceedings of the 2013 ACM International Symposium

on New Ideas, New Paradigms, and Reflections on Programming & Software, On-

ward! 2013, pages 187–204, New York, NY, USA, 2013. ACM. ISBN 978-1-

4503-2472-4. doi: 10.1145/2509578.2509581. URL http://doi.acm.org/

10.1145/2509578.2509581.

162

http://doi.acm.org/10.1145/2647508.2647517
http://doi.acm.org/10.1145/2384577.2384587
http://doi.acm.org/10.1145/2509578.2509581
http://doi.acm.org/10.1145/2509578.2509581

Appendix I

Runtime Primitives

This appendix contains source listings for runtime primitive functions used in Higgs.

These serve to illustrate the extended JS dialect used to implement the Higgs runtime

library, and the way in which low-level type tag test instructions are used to perform

dynamic dispatch based on value types.

The $rt_lt primitive, illustrated in Figure I.1, implements the JS less-than com-

parison operator (i.e. a < b). Low-level type tag test IR instructions are used to check

if the arguments x and y are integers (int32), floating-point values (float64) or

strings and take appropriate action. The integer case is the most common, and so it is

handled first. Should both x and y be integer values, an IR instruction specifically im-

plementing machine integer less-than comparisons is used. On the x86 platform, this

translates into a cmp followed by a jl instruction.

The case where both inputs are floating-point values is similar, and uses machine

instructions specifically for comparing double-precision floating-point values. If one

value is float64 and the other int32, then the latter is converted into a floating-

point value, and a floating-point comparison is performed. Comparing two strings, or a

number and a string, results in a lexicographical string comparison being used.

The $rt_toString primitive, shown in Figure I.2, is used internally by our JS

runtime to produce a string representation for any JS value. This function would be

called, for instance, if calling the print function (console printing) on a number, an

array or an object. The primitive uses a long (and sometimes inefficient) cascade of

dynamic type tag tests to choose the appropriate action for any input value type.

/**
JS less-than operator

*/
function $rt_lt(x, y)
{

// If x is integer
if ($ir_is_int32(x))
{

if ($ir_is_int32(y))
return $ir_lt_i32(x, y);

if ($ir_is_float64(y))
return $ir_lt_f64($ir_i32_to_f64(x), y);

}

// If x is float
else if ($ir_is_float64(x))
{

if ($ir_is_int32(y))
return $ir_lt_f64(x, $ir_i32_to_f64(y));

if ($ir_is_float64(y))
return $ir_lt_f64(x, y);

if ($ir_is_undef(y))
return false;

}

var px = $rt_toPrim(x);
var py = $rt_toPrim(y);

// If px and py are both strings
if ($ir_is_string(px) && $ir_is_string(py))
{

// Do a lexicographical comparison
return $ir_eq_i32($rt_strcmp(px, py), -1);

}

return $rt_lt($rt_toNumber(x), $rt_toNumber(y));
}

Figure I.1: Primitive function implementing the JS less-than comparison operator

xiv

/**
Get the string representation of a value

*/
function $rt_toString(v)
{

if ($rt_valIsObj(v))
{

var str = v.toString();

if ($ir_is_string(str))
return str;

if ($rt_valIsObj(str))
throw TypeError(’toString produced non-primitive’);

return $rt_toString(str);
}

if ($ir_is_int32(v))
return $rt_intToStr(v, 10);

if ($ir_is_float64(v))
return $rt_numToStr(v, 10);

if ($ir_is_string(v))
return v;

if ($ir_is_rope(v))
return $rt_ropeToStr(v);

if ($ir_is_undef(v))
return "undefined";

if ($ir_is_null(v))
return "null";

if ($ir_is_bool(v))
return $ir_eq_bool(v, true)? "true":"false";

assert (false, "unhandled type in toString");
}

Figure I.2: Primitive function to convert JS values to strings

xv

Appendix II

Microbenchmarks

This appendix contains source code listings for the microbenchmarks discussed in

Section 8.5.

function fib(n)
{

if (n < 2)
return n;

return fib(n-1) + fib(n-2);
}

fib(44);

Figure II.1: fib44

function test()
{

// 2 billion iterations
// Note: i is a global variable
for (i = 0; i < 2000000000; ++i)
{
}

}

test();

Figure II.2: loop-global-incr

// Generate a linked list of length 100
var lst = null
for (var i = 0; i < 100; ++i)

lst = { val: i, next: lst }

function listSum(lst)
{

if (lst == null)
return 0;

else
return lst.val + listSum(lst.next);

}

// 50 million iterations
for (var k = 0; k < 50000000; ++k)

s = listSum(lst);

Figure II.3: list-sum-100

function test(o)
{

for (var i = 0; i < 100000000; ++i)
{

// Note: k is a global variable
for (k in o)
{

}
}

}

var o = {
a: 1,
b: 2,
c: 3,
d: 4,
e: 5,
f: 6

};

test(o);

Figure II.4: 100m-for-in

xvii

	Résumé
	Abstract
	Contents
	List of Appendices
	List of Abbreviations
	Preface
	Acknowledgments
	Introduction
	Contributions
	Structure of this Document

	Background
	Dynamic Programming Languages
	JavaScript
	Early History of Dynamic Language Optimization
	State of the Art JavaScript VMs
	Tricks of the Trade

	Summary

	A Self-Hosted JavaScript VM
	Design of Tachyon
	From Tachyon to Higgs
	DLS 2011 Article

	Eager Basic Block Versioning
	Problem and Motivation
	Basic Block Versioning
	Results
	CC 2014 Article

	Lazy Basic Block Versioning
	A Problem with Eager BBV
	Laziness
	Results
	ECOOP 2015 Article

	Typed Object Shapes
	Problem and Motivation
	Whole-Program Analysis
	Typed Shapes
	Results
	CGO 2016 Article

	Interprocedural Basic Block Versioning
	Problem and Motivation
	Interprocedural Versioning
	Alternative Solutions
	Results
	ECOOP 2016 Article

	Additional Experiments
	Overflow Check Elimination
	Problem Description
	The Optimization
	Results

	Interprocedural Shape Change Tracking
	Problem Description
	The Optimization
	Results

	Versioning and Register Allocation
	The Problem
	The Optimization
	Results

	BBV and the Instruction Cache
	Microbenchmarks
	Summary

	Future Work
	Incremental Inlining
	Multi-Stage Fallback
	Adaptive Recompilation
	Adaptive Ordering of Type Tag Tests
	Propagating Facts instead of Types
	Array Specialization
	Array Bounds Check Elimination
	Closure Variable Awareness
	Allocation Sinking
	Lazy, Deferred Computations
	IR-level versioning
	Fragment Optimization
	Garbage Collector Optimizations
	IR Performance Optimizations
	Summary

	Conclusion
	Bibliography
	 Runtime Primitives
	 Microbenchmarks

