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Abstract

In recent years, there has been an increase in the poputéritynamic languages such
as Python, Ruby, PHP, JavaScript and MATLAB. Programmersegpie the productivity
gains and ease of use associated with such languages. Howwsgt of them still run in
virtual machines which provide no Just-In-Time (JIT) colapbdn support, and thus per-
form relatively poorly when compared to their staticallymaled counterparts. While the
reference MATLAB implementation does include a built-immgailer, this implementation
is not open sourced and little is known abouts its internakimgs. The McVM project has
focused on the design and implementation of an optimizinga&i machine for a subset of
the MATLAB programming language.

Virtual machines and JIT compilers can benefit from advasgapat static compilers do
not have. It is possible for virtual machines to make use ofengdynamic information
than static compilers have access to, and thus, to impleoptimiization strategies that are
more adapted to dynamic languages. Through the McVM prageate possible avenues to
significantly improve the performance of dynamic langudtgese been explored. Namely,
a just-in-time type-based program specialization schemsebken implemented in order to
take advantage of dynamically available type information.

One of the main contributions of this project is to provideadternative implementation
of the MATLAB programming language. There is already an opearce MATLAB in-
terpreter (GNU Octave), but our implementation also inekidn optimizing JIT compiler
and will be open sourced under the BSD license. McVM aims toimeca viable imple-
mentation for end-users, but could also see use in the cemeisearch community as a
testbed for dynamic language optimizations. In additiotheocontribution of the McVM



framework itself, we also contribute the design and impletagon of a novel just-in-time
type-based program specialization system aimed at dynamgeciages.

The novel specialization system implemented in McVM showglmpromise in terms of

potential speed improvements, yielding performance gam$o 3 orders of magnitude

faster than competing implementations such as GNU Octavwealso easily adaptable to
other dynamic programming languages such as Python, Rubyasa&®cript. The investi-

gation of performance issues we make in this thesis alsoestigfuture research directions
for the design of dynamic language compilers of the future.



Résum é

Ces derrgres angées, il y a eu une augmentation de la popudadliés langages dynamiques
tels que Python, Ruby, PHP, JavaScript et MATLAB. Les prograoms appecient les
gains de productivi et la facilie d'utilisation assoé&ea ces langues. Cependant, la plu-
part de ces langages sé&outent encore dans des machines virtuelles qui ne foermtiss
aucun support pour la compilatianla voke, et ont donc une performanceérnéure si
on les compara leurs homologues compsg statiguement. Bien que I'in@vhentation de
reference de MATLAB comprenne un compilateuréigié, cette application n’est pas open
source et son fonctionnement interne demeure un secredtireluLe projet McVM a mis
I'accent sur la conception et I'impientation d’'une machine virtuelle optiraespour un
sous-ensemble du langage de programmation MATLAB.

Les machines virtuelles et les compilateark voke peuvent gréficier d’avantages que
les compilateurs statiques n’ont pas. Il est possible pesimachines virtuelles de faire
usage d’informations dynamiquelaquelle les compilateurs statiques n’ont pasagcet
donc, de mettre en oeuvre des saés d’optimisation qui sont plus adaps aux lan-
gages dynamiquei\ travers le projet McVM, plusieurs avenues possibles pou&larer
consicerablement la performance des langages dynamiquesoakploées. Entre autre,
un syseéme de spcialisation de programmesla voke permettant de profiter d’informa-
tions sur les types disponible dynamiquemeattamplemeneé.

L'une des principales contributions de ce projet est derfiowrne impEmentation alter-
native du langage de programmation MATLAB. Il existejalun interpeteur MATLAB

open source (GNU Octave), mais notre application compéegraement un compilatear
la volée optimi€ et sera distribee sous la licence open source BSD. McVM \asgevenir



une impEmentation viable pour les utilisateurs finaux, mais pdusugssiétre utili€e dans
le milieu de la recherche sur les compilateurs comme owkmErimentation. En plus de
la contribution du logiciel irkgie McVM lui-méme, nous avonsgalement contritia la
conception et lagalisation d’un systme de spcialisation de programneela voke visant
a l'optimisation des langages dynamiques.

Le syseme de spcialisation mis en oeuvre dans McVM se montrestprometteur en
termes de potentiel d’adtiorations de la vitesse d’éxution, permettant des gains de per-
formance allant jusg@’ trois ordres de grandeur com@araux impkmentations concur-
rentes telles que GNU Octave. Il €galement facilement adaptable’autres langages de
programmation dynamique tels que Python, Ruby et JavaStixamen des probimes

de performance que nous faisons dans ceiedisuggre aussi des pistes de recherche pour
la conception des compilateurs de langages de progranmwtimmiques de I'avenir.
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Chapter 1

Introduction

MATLAB is a well-known, widely-adopted and easy-to-usegnamming language aimed
at the scientific and engineering communities. Unfortugatbe Mathworks reference
implementation of MATLAB is neither free nor open sourcedd dittle about its internal
workings is published. There is already an open source MAlikterpreter (GNU Oc-
tave) which offers a fairly complete implementation of thé\MLAB language, but this
implementation performs poorly, making it unsuitable famy computationally intensive
applications.

Dynamic languages such as Python, Ruby, PHP, JavaScript AmtdAB are gaining pop-
ularity at an impressive rate However, most of them perform poorly when compared to
their statically compiled counterparts (e.g.. C, C++, Jate,).e This is largely because
most of these languages are purely interpreted. Dynamgukges are built with pro-
grammer convenience in mind, but because of their highhadyn nature, it is difficult to
predict their behavior ahead of time.

The McVM virtual machine is a component of a larger effort Wmaas the McLab projeét
which was initiated by Professor Laurie Hendren of McGilivemsity. The overall goal

1TIOBE Programming Community Index:
http://www.tiobe.com/index.php/content/paperinfoitp

2The McLab Homepage:
http://www.sable.mcgill.ca/mclab



Introduction

of the project is to find ways to improve the performance, uisefss and accessibility of
current scientific programming languages. Several gradgtatents, members of the Sable
Research Group (McGill's compiler research laboratoryjtigigate in this project. The
McLab team currently focuses its efforts on the MATLAB pragrming language.

McVM is McLab’s virtual machine, which currently implemena significant subset of
the MATLAB language. It is a testing ground for new compilgtimizations aimed at

scientific and dynamic languages. It is also an opportunitiest new ideas or language
features that could be integrated in scientific programntamguages of the future. In
the following sections we will explain what makes McVM anergsting and challenging
research project, and why we believe it is an important daution to the compiler research
community.

Much of this thesis focuses not specifically on the perforeeassues faced by scientific
programming languages, but rather on the specific problerated to optimizing dynamic
languages such as MATLAB. We believe that virtual machinesJn compilers can ben-
efit from advantages that static compilers do not have. lbssible for virtual machines to
make use of more dynamic information than static compilergehaccess to, and thus, to
implement optimization strategies that are more adaptéegnamic languages.

Through the McVM project, we explore some possible avenaesgnificantly improve
the performance of dynamic languages. We have designedrapidmented an interpreter
and Just-In-Time (JIT) compiler for a non-trivial subsettioé MATLAB language. Our
JIT compiler integrates analyses and optimizations mashendesigned specifically to
improve the performance of dynamic languages such as MATLAB.

1.1 Contributions

The McVM project makes the following contributions:

¢ Design and implementation of an extensible interpreter\aridal machine for a
non-trivial subset of the MATLAB programming language.



1.1. Contributions

e Design and implementation of an extensible JIT compiletierMcVM virtual ma-
chine. This JIT compiler yields performance numbers uptediorders of magnitude
faster than GNU Octave and in some cases it is faster thareteeence MATLAB
implementation.

e A novel just-in-time type-based program specializatiostsgn aimed at dynamic
languages. This system, which shows much promise in ternmoiehntial speed
improvements, is also easily adaptable to other dynamigraroming languages
such as Python, Ruby and JavaScript.

e A type inference analysis based on abstract interpretatiesigned specifically for
dynamic programming languages such as MATLAB.

¢ Additional type-based optimizations for our JIT compilEhese optimizations make
use of information provided by our type inference analysis.

e A detailed analysis of the performance of our JIT compiles,efficiency of our type
inference analysis and gains associated with our JIT cempgtimizations.

e Contribution of the entire McVM source code under the BSD omamce license.

We aim to make McVM a viable MATLAB implementation which sHdilecome increas-
ingly usable by end-users for real-world scientific apglmas. However, another potential
use for our implementation is as a research framework. TAmdéwork will make it possi-
ble for other researchers to easily try experimental o@tndn techniques and test novel
language features. It will be possible for developers toagdomized features to McVM
that are specific to their area of study, something that idlfgrossible with the reference
MATLAB implementation.

There is already an open source MATLAB interpreter (GNU @e}fabut our implementa-
tion also includes an optimizing JIT compiler, somethinat tvas not previously available.
Furthermore, our implementation will be open sourced urlderBSD license, which is
more liberal than the GNU GPL license, and more likely to emage reuse of our imple-
mentation by both academic and commercial entities.
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Finally, based on our experience with McVM, we propose psang future directions for

those researching and implementing JIT compilers andatirhachines for dynamic lan-
guages. We identify key factors crucial to the implementaof efficient virtual machines
for dynamic languages and propose ways to improve upon tifierpgnce results we have
obtained with the McVM virtual machine.

1.2 Thesis Outline

Our thesis is divided into 8 chapters (including this introtion chapter). Chaptet in-
troduces background knowledge and related work helpfuhibeustanding our research,
including a brief description of the MATLAB language. ChapBediscusses which fea-
tures of the MATLAB programming language are currently supgd in McVM. Chapter
4 examines the McVM virtual machine architecture in detait)uding our JIT compilation
and just-in-time type-based specialization strategy.

Chapter5 explains the type inference strategy required by our tygeet specialization
mechanism. Chapté discusses the performance of our JIT compiler in comparison
MATLAB and GNU Octave, as well as the usefulness of our vagioptimization strategies
and the effectiveness of our type inference system. Cha@alescusses issues associated
with the MATLAB programming language design that make optation difficult. Finally,
chapter8 presents our conclusions and outlines some possible freggearch avenues for
optimizing scientific and dynamic languages beyond what axe lachieved.



Chapter 2
Background and Related Work

In this chapter, we present background information helpfuthe understanding of this
thesis as well as research work related to our own. We begim avbrief overview of
the MATLAB language. This includes supported featurestyipe system, the execution
model used, programming code examples, typical featur®AdiLAB programs as well
as a discussion of the similarities between MATLAB and FORTRA

This is followed by a discussion of virtual machines, dynatanguages and the associ-
ated optimization challenges. We then present related wotlke areas of compilers for

dynamic languages, program specialization, type infexemcl adaptive optimization. This
research work is in direct relation to our own or exploresiginareas of compiler research.

2.1 The MATLAB Language

The MATLAB language was originally invented in the late 191y Cleve Moler, then a
professor of computer science at the University of New Mextde designed the language
to give his students access to some of the power of FORTRANpwithaving to learn the
FORTRAN language itself Aimed towards students, MATLAB was to be easier to learn

The Origins of MATLAB:
http://www.mathworks.com/company/newsletters/newtes/clevescorner/dec04.html

5



Background and Related Work

than other languages commonly used at the time. Since tham|L&B has gained wide
acceptance in both academic, scientific and engineerintpsir

The MATLAB language has evolved significantly throughow glears. The language is
a procedural dynamic programming language geared towaielstgic computation. It is
dynamically-typed, weakly-typed, and incorporates maatures found in other dynamic
languages, such as the run-time creation of closures. dtialegrates native support for
n-dimensional matrix data types and provides a large fbohcommon matrix operations
(e.g.: addition, inversion, multiplication) and algonibk (e.g.: SVD, QR-Factorization).

2.1.1 Supported Features

The Mathworks MATLAB implementation is very feature richh& short list below enu-
merates some of its most prevalent featuf&s(4:

Interactive mode with read-eval-print loop

e Code editor and debugging environment

o Effective documentation search system

e Built-in support for complex-numbers

e Uniform treatment of all basic types as matrices
e Range expressions and array slicing/reshaping
e Powerful built-in matrix operations

¢ Nested function definitions

e Creation of closures from nested functions

e Creation of closures from lambda expressions

e Function handles
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Object-oriented programming support

Extensive library of numerical algorithms

Graphical 2D and 3D plotting tools

C and FORTRAN function wrapping

e Java code integration

The reference MATLAB implementation from Mathworks offensre than a simple MAT-
LAB interpreter. Rather, it offers a fully featured develogmenvironment for MATLAB,

complete with a code editor, a debugger, a search systemdtadicumentation about li-
brary function, and a way to save your “workspace” so you eduarn to your work at a
later time.

2.1.2 MATLAB’s Type System

MATLAB is a dynamically-typed and weakly-typed languagehas many basic types, in-
cluding several integer types of different precisisingle anddouble real-valued types,
implicit support for complex valuedpgical  boolean-valued types, andharacter
types ED04. All of these types are implicitly treated as if they wergvays matrices.
To the programmer, scalar values appear as if they were geataf size 1x1. Charac-
ter types are MATLAB’s primitive for creating strings, tha, in MATLAB, strings are
matrices of characters.

MATLAB also sports a matrix type known as the cell array. Tisisonceptually a matrix
of references to other MATLAB objects. Function calls haaé-by-value semantics and
symbols refer to objects directly rather than acting asregiees to them. MATLAB has
no pointer type, making it impossible to create truly cyaata structures without using
MATLAB's object-oriented facilities. MATLAB allows the crion of function handles to
existing functions as well as the creation of closures orflyhe

In MATLAB, there are no obvious type promotion rules as in C.ded, it seems that the
language has largely grown organically, and thus, has its @mplex typing rules. For

7



Background and Related Work

example, operations between unmatched types largely pecgtuoneous behavior (excep-
tions being thrown). Operations between integers are dldwed if the integers have the
same type. However, MATLAB supports operations betwdmible and some of its in-
teger types (but not all), in which case the result is of thegar type. On the other hand,
operations betweesingle values and integer types are always erroneous.

There is also a basistruct aggregate type which allows the creation of objects with
named fields. An interesting fact is that the field names assgzhas strings when creat-
ing a struct object (these objects are created by callisiguat  function rather than by
instantiating them from a previously defined type), and tarsbe dynamically generated.
Later versions of MATLAB have introduced classes and moneaaded object-oriented
programming features.

2.1.3 MATLAB'’s Execution Model

In MATLAB, variables exist within a “workspace” object, whianaps variable names to
their values. There is a global workspace (the global scoye)which global variables
are defined. When performing an assignment in interactiveenf@d).: by writinga = 1;

at the prompt), the user creates bindings in the global vpades. MATLAB distinguishes
between two types of reusable units of code: functions anigtsc Functions can have
multiple input and output parameters. These parametersaned in the function’s own
workspace. When a symbol that is unbound in a function is ewatlj however, its value
is evaluated in the global workspace. Scripts, on the othadhtake no parameters, and
operate directly on the caller's workspace. The caller caralfunction, or the global
workspace if the script is called at the prompt in interaetivode.

Nested functions are allowed in MATLAB. These functions catyde called from their
parent function, or call themselves. When they are callesl get their own workspace
where their parameters are bound and which extends thetfanetion’s current workspace.
Hence, nested functions can have access (and modify) lesiabthe parent workspace.
Closures can be made from nested functions using the clogp@n@tor (i.e.: using the
A = @function_name; syntax). This will create a function handle to a closure iralh
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all unbound variables of the nested functions are assigreddurrent value in the parent
workspace. This handle can then be passed to outside foactidesired.

As stated before in sectiah 1.2 all function calls have call-by-value semantics, and as-
signments create copies rather than references. Thisddrals of assignments to cells
of cell arrays or to fields of structs. Hence, MATLAB makesnifpossible to have cyclic
data structures without using classes and object handleSTLKB allows functions to
return multiple values at once. However, it also allows fiows returning multiple values
to return only some of these values if the caller does nogasdi of the return values to
variables.

MATLAB does not have a module system in the traditional seRsgher, it uses a system
based on storing units of code (scripts and functions) intfild4, and separating these into
directories. MATLAB allows changing the currently accédsifunctions and scripts when
changing the current directory, by issuingc&acommand. This command takes a string
representing the target directory path as input. Note thiatstring does not need to be a
constant value, and could be read from the console, for ebeafhen theed command is
issued, symbol lookups in all currently executing functiavill be affected.

2.1.4 MATLAB Code Examples

function d = editdist(sl, s2)
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14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46

DelCost = 1;
InsCost = 1;
ReplCost = 1,

nl
n2

size(sl, 2);
size(s2, 2);

D = zeros(nl+l, n2+1);

for i1 = 1:.n1,
D(i1+1, 1) = D(i1, 1)+DelCost;
end;

for j1 = 1in2,
D(1, j1+1) = D(1, j1)+InsCost;

end;

for i1 = 1:.n1,

for j1 = 1:n2,
if sl(il) == s2(j1)
Repl = 0;
el se

Repl = ReplCost;
end;

D(i1+1, j1+1) = min([D(i1, j1)+Repl D(i1+1, j1)+ ...

DelCost D(i1, j1+1)+InsCost]);
end;
end;

d = D(n1+1, n2+1);

Listing 2.1 A MATLAB program example

The example shown in listing.1 shows a simple MATLAB function for computing the

10
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edit distance between two strings. This function could lveked by inputting thel =
editdist(  'cow’ , 'meow’ ); command at the prompt, or it could be called from another
function. This example demonstrates array indexing andtitey over ranges of values.
Note that MATLAB arrays have indices starting at 1 instead.ofThe... operator de-
notes continuation of a statement to the next line. Also tldéthen1l = size(s1, 2);
statement gets the size of the arsayalong the second dimension, that is, the length of the
strings1l. The statemend = zeros(nl+1, n2+1); creates a 2D matrix initialized with
zero values of size (n1+1)x(n2+1).

>>
> A =[1234567 8 910 11 12; 13 14 15 16]

A =
1234
5678
9 10 11 12
13 14 15 16
>>
>> A(1,4)
ans =
4
>>
>> A(,1)
ans =
1
5
9

11
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26
27
28

29
30
31
32
33
34
35
36

13

>> A(L, 2:3) = [7 7]
A =

1774
56738
9 10 11 12
13 14 15 16

Listing 2.2 Sub-arrays indexing (or slicing) in MATLAB

Listing 2.2 shows sample output of MATLAB being run in interactive modéere com-
mands can be typed at the prompt, and the resulting outpotigediately displayed. In
this example, we show that the matrix variablean be indexed using scalar values, similar
to the way 2D arrays are indexed in languages like Java (eXtafpMATLAB matrices are
row-major). However, MATLAB matrices can also be read ortign to multiple elements
at a time using ranges of indices specified with the colonaiperThat is, one can create
sub-matrices from existing matrices, or assign to subigustof an existing matrix. We
refer to this capability as slicing.

2.1.5 Typical Program Features

MATLAB being aimed at scientific computing, the features loé typical MATLAB pro-
gram are different from those of the typical C, C++ or Java moygrin the case of C++
and Java, for example, it is assumed that these programsaomithin many short methods
that do very little work (e.g.: accessor methods), and thatall graph complexity may be
very complex. C, C++ and Java programmers usually aim to diviol& into the smallest
units possible, so that code will be neatly organized, efl#iprogram grows to very high
levels of complexity.

12
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This is usually not the case in MATLAB. Those who use the lagguseem usually focused
on getting work done quickly and on making computations &sieit as possible. Typi-
cal MATLAB programs will often have very few functions andairfy simple call graph.
These functions can sometimes grow in length to levels tloaticdvbe considered undesir-
able by C, C++ or Java programmers. Use of built-in operatodsodmatrix operations
is strongly encouraged over the use of nested loops whepessible, sometimes making
the code appear rather cryptic.

2.1.6 Similarities to FORTRAN

As previously stated, MATLAB was inspired from FORTRAN, baotended to be easier to
learn. As such, it shares several similarities with FORTRARMBNth are procedural and im-
perative programming languages. Both languages are ainsaikatific computing. Both
share powerful matrix manipulation primitives. Both allolicig of multidimensional
arrays at run-time. MATLAB provides a rich array of built-@perators and functions to
manipulate matrices, as well common matrix algorithms. Matthese built-in functions
are actually interfaces to functions found in the BLAS and B&R libraries, typically
used with FORTRAN programs. As a result, a technical sintjasetween FORTRAN
and MATLAB is that they both store arrays and matrices in golunajor order.

Both languages also share some common types, SUSMBSER REAL COMPLEX_.OGICAL
andCHARACTERFORTRAN allows specifying multiple degrees of precisionifdegers,
similarly to MATLAB, which has multiple integer types. FORTRRalso has two kinds
of REAL variables, similar to MATLAB’ssingle anddouble . One difference is that
whereas FORTRAN distinguishes between scalar and arragblasi, MATLAB implicitly
treats all scalar variables as matrices of size 1x1, whichbeadynamically extended in
size.

We could also say that there are similarities in programrsigtes used by MATLAB and
FORTRAN programmers (possibly because the two crowds mtet® a large extent).
It is very common for FORTRAN programs to be written in one owx fides containing
few procedures, with procedures being potentially quitegloAs stated in sectiod.1.5
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the same is often true of MATLAB programs. On the stylistidesiit could also be said
that both FORTRAN and MATLAB programs use rather nondesegptariable names,
probably because much of the code implemented in MATLAB a@&FRAN is based on
widely known algorithms which programmers assume requtemmuch documentation.

In terms of important differences, FORTRAN uses static tgpift has variable declara-
tions with explicit type declarations, whereas MATLAB isrdymically typed and has no
explicit variable declarations. FORTRAN programs are aygactlly statically compiled,
whereas MATLAB code typically runs in an interactive envineent where users can enter
commands into a console, and there is no explicit compiigpimcess. FORTRAN also
has a traditional module system, whereas MATLAB uses asybtesed on file names and
directory trees to organize code. Whereas FORTRAN has pejm#TLAB does not,
but has function handles. Finally, FORTRAN programs are ebgueto make parallelism
explicit, but MATLAB programs do not, and instead rely oniaptzed parallel libraries.

2.2 Virtual Machines and Dynamic Languages

Dynamic languages are high-level programming languagssetkecute, at run-time, be-
haviors that would otherwise be statically compiled in otteguages. Common dy-
namic languages include Python, Perl, PHP, Ruby, Schemd|t&8liknand of course, the

MATLAB language. These languages are often garbage-tetdedynamically-typed and

weakly-typed (variable types are determined at run-tiniéey also tend to have superior
reflective capabilities compared to static languages.

Because of their dynamic components, such languages tlypiaalin execution environ-
ments called Virtual Machines (VMs). A VM is essentially eogram (written in any
language) that executes programs written in the dynamgulage PAF "05]. This exe-
cution can be achieved through the use of an interpreteri¢asRython), or by compiling
programs at run-time using a Just-In-Time (JIT) compileryéth Java). Virtual machines
have the fundamental role of implementing the dynamic carepts of dynamic languages.

In addition to providing an execution environment for a dymalanguage, virtual ma-
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chines can also incorporate analyses and transformataimize programs at run-time.
This can be advantageous, because more information aleoprtdgrams to be optimized is
available at run-time than would be available staticallyprAgram can also be dynamically
optimized in various stages, such that the VM will adjusbjgimization strategy based on
profiling data gathered while program is running.

Dynamic languages were once somewhat marginal, but theyreaently started becoming
more widely used. Programmers tend to like languages likedPy for example, because
they claim that those languages put less constraints onrtigggmmer. It is often said
that dynamic languages achieve more “work” per line of cddatstatic languages, and
thus, allow programmers to be more productive. This makegessense from a technical
standpoint, because virtual machines perform much baokgrevork at run-time when
executing dynamic languages, in a manner that is transip@réme programmer.

2.2.1 Optimization Challenges

Dynamic languages present some optimization challenggwofown. They are typically
harder to optimize than statically compiled languages bseahey are, so to speak, more
dynamic. That is, the semantics of dynamic languages ma&ssitobvious what the exact
behavior of the program will be at run-time. A static compiteas less information to
work with when compiling a language that is dynamically typeersus a statically typed
language, for example.

When a language is dynamically typed, the type of a given blaiean change at different
program points, and in some cases, be impossible to detestatically, because it could
depend on the program’s input. This is problematic for amaging compiler, because if
the type of a variable cannot be determined, the variableataways be efficiently stored,
and operations performed on that variable may need to chbek type the operation will

be performed on.

However, dynamic typing is not the only challenge dynammglaages present. These
languages often offer many other dynamic features, sucheagltility to add code to a
program, or even to modify existing code (e.g.: adding figts class, as in python)
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at run-time. One notable feature found in many dynamic laggs is theval construct.
This construct allows new code to be entered as input to tigram, often directly through
a command-line interface.

As recognized by the designer of thec PHP compiler BdVGO09, the eval construct
presents a major barrier to any optimization attempt, aseiiks almost all assumptions
one typically makes in static intraprocedural analysescedonce encounters a program
statement containing theval construct, it is essentially encountering a statement that
could do almost anything to the current state of the progrBamientially, this statement
could change the type of variables in the current scope acailndetermined function in
the program, or even load a new module, but none of thesenaaten be predicted ahead
of time.

The MATLAB programming language has its share of dynamid¢uiess that pose opti-
mization problems. For one, it does not use a classical necglidtem, but rather one that
is based on the directory tree. At any program poinid &ommand can be issued. When
this happens, all function lookups may change in every fanatf the program. However,
this construct can take its target directory string from soyrce, and thus, the target direc-
tory (and hence, which bindings will be changed) cannot yéaze statically determined.

The MATLAB language also has a rather unusual type systerohwdliows on-the-fly type
conversions. For example, if one has a matrix containing daluble values, but sets one
element of this matrix to a complex value, then the whole matust now be able to store
complex values. MATLAB makes this appear seamless to thgranomer (all double
matrices can store complex values), but for performanceores it is best to make the
distinction between matrices that can and cannot contanptex values when compiling
or interpreting the language.

To efficiently execute dynamic languages, virtual machimest find ways to deal with
all the dynamic features these languages allow. This ofteaile performing dynamic
analyses on programs to attempt to determine what actuafipdns at run- time, often
through profiling. It also often means that these virtual hiaes must be able to adapt to
situations in which certain assumptions made about theimgrprogram are found to be
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invalid.

2.3 Dynamic Language Compilers

The McVM virtual machine makes an attempt at optimizing asstitof the MATLAB
programming language through the use of a Just-In-Time) @mpiler. The idea that
dynamic languages could be compiled instead of simply pnézed, either ahead of time
or just-in-time is not new, as many of the older dynamic |laaggs such as LISP have now
had static compilers for years. However, much of the modepular dynamic languages,
such as PHP, Python and Ruby, have reference implementétatrere still interpreted.

This is probably due to many of the optimization challenggtimed in sectior?.2.1. These
languages are often designed to make the programmer’s aagk,emaking the language
as dynamic as possible, with little regard to which languagéures are easy to optimize.
Designing a compiler for such languages is difficult. If ttegrammer can add fields to
classes, change the type of any variable, and even insertod@svat any point in time, it
becomes very challenging to map the programs to machine icoaey kind of efficient
manner. This is very different from languages like C, whictkena almost trivial to map
every construct to machine code. With dynamic languageshrfewer assumptions can
safely be made about the semantics of the program.

Despite these challenges, in recent years, there have kmgnindependent efforts to im-
plement ahead of time and just-in-time compilers for lamgpsasuch as PHP, Python and
Ruby. Thephc compiler BdVG09 is a static compiler being designed for PHP. It has
shown mean performance gains of 53% as compared to themeéeplip implementation.
The PyPy projectRP0f aims to create a virtual machine for Python written in Pytho
itself which can generate optimized code for arbitraryéatgnguages. Psyc&[g04] is a
virtual machine which makes use of Just-In-Time compitadad Just-In-Time specializa-
tion to improve over the performance of the reference Pythmgrlementation. They show
impressive speedups of up to 109 times in very specific stEnar

There have also been successful efforts to compile MATLA®ypams, both statically and
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Just-In-Time. The FALCON systenDRG" 95, RP94 uses type, shape and rank analysis
to efficiently translate MATLAB programs into FORTRAN 90 witlarallel directives. The
resulting code obtained was shown to be often as fast aswatidn FORTRAN programs.
The MaJIC systemAP0Z combines JIT-compilation with an offline code cache main-
tained through speculative compilation of MATLAB code if@dFORTRAN. The Match
VM project [HNK™00], which largely focuses on adaptively parallelizing MATBApro-
grams, also integrates a compiler which translates MATLABree code to a lower-level
intermediate form.

MaJlC is similar to our own system: a part of their approadio igenerate code on-the-fly
as late as possible, in order to specialize the code geoefati performance. An important
difference with our system is that we use a single unifiedc@lifpiler back-end and do not
rely on intermediate languages like C or FORTRAN. We beliéng allows our approach
to be faster and more flexible, as there is only one executotezt. In MaJIC, the JIT

compiler is presented as a fallback mechanism, whereasysters is designed with the
goal of utilizing the optimization opportunities made dable by a JIT compiler whenever
possible.

The Match VM project is similar to our own in that it is a virluaachine which includes
a MATLAB compiler and performs type and shape analysis. Harehe main focus of
their project is not so much the optimization of dynamic catleun-time (as with ours),
but the execution of MATLAB code on multiprocessor architees using automated par-
allelization. The focus of their work is on developing adagudata dependency detection,
resource allocation as well as job scheduling techniques.

2.4 Program Specialization

Procedure cloning is a technique by which a compiler cantesgzecialized copies of func-
tion bodies, dividing incoming calls between the originadlaloned procedureS€HK92].
This cloning technique is motivated by the fact that différeall sites will make use of
the same procedure to operate on different input data. Héncan be advantageous to
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produce specialized versions of a procedure which are oqehto deal with input data
possessing different characteristics. The techniquengaBg allows an optimizing com-

piler to make more assumptions about the specialized pupedmbdies than it could make
about the original procedure.

Such specialization techniques have been applied to lgegusmuch as SELFE[U8Y, Java
[SCO03 and C++ PC9Y4, most notably to reduce the overhead of virtual methodsdai
statically establishing which derived method will be cdlie a given context. In practice,
this can yield very significant performance gains. Schuifiz @onsel report speedups of
up to 300% for their specializing Java compil&J03. However, it is trivial to see that
program specialization does not always come for free. Justih method inlining, it
comes at the cost of code size expansion.

Specialization of cloned procedures is typically achievedugh a technique known as par-
tial evaluation. Partial evaluation is a form of programrmgfrmation in which a program
or procedure is partially evaluated at compilation-timedzhon statically-known facts. As
a part of this process, optimizations such as constantrfgldan be used to optimize the
program. Partial evaluation can be thought of as staticéibyng” some of the inputs
of a program or procedure and optimizing code by eliminatingecessary computations
which could then be performed at compile-tind&[S93. This technique has been used by
Elphick et al. ELC0J in MPE, an online system to partially evaluate MATLAB soeérc
functions into more efficient MATLAB code.

Program specialization, as relevant as it may be to stajectbriented language, offers

even more of an optimization potential for dynamic langsagddis is because in dynamic
languages, the source code of the original program speeWes less information about

the precise semantics of the program. Furthermore, dynamguages tend to encourage
the reuse of procedures to deal with wide arrays of diffetgoés (i.e.. in MATLAB, it

is conceivable that the same method could operate both imgstas well as on numeric

matrices). In dynamic languages, there is more room formédion about the program to

be inferred, and more interpretive overhead to be poténeéiminated.
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2.5 Type Inference

Type inference is the process of reconstructing type in&ion that is missing from the
lexical definition of a program based the usage of variabiethé said program as well
as on semantic rules inherent to the language this prograswwitien in [DB9€]. It can
be thought of as a way of recapturing type information thahissing from a program’s
lexical specification through inference based on the tyfagnmation that is provided, both
implicitly through the semantics of the language, and exfiwhen variables are assigned
values.

Statically typed languages such as C and C++ make the typemiables almost entirely
explicit, since each declaration specifies a variable tgpeeven in those languages, poly-
morphism and pointers can make the concrete type of a variaidertain. In these lan-
guages, simple type inference schemes can help to resaetualMiunction calls BS94,
thereby greatly reducing overhead. Other languages likealid. Haskell make variable
types implicit, while still being statically typed. In sutdnguages, type inference is con-
sidered essential in order to statically compile prograansl to warn programmers about
potential errors ahead of time.

In dynamically typed languages, such as Python, Ruby and M¥S[Lit is common for
variables to have no explicit declaration point. Types a®oaiated with values rather
than variables, and thus, the type of a given variables igixed. In such languages, type
inference can help to drastically reduce interpretive lbgad. Without it, the types of all
variables must be assumed to be unknown, in which case amgtagreperformed on a
variable must first check what type the variable’s valueantty has, and dispatch code to
perform the operation as appropriate. Furthermore, ifype bf a variable is unknown, it
is sometimes difficult to efficiently store this variable iremory, as we do not know how
much space its value will occupy.

Generally speaking, the result of a type inference analgsianapping of variables to the
set of possible types these variables can occupy at eachapnggpint. Type inference
analysis can be achieved through many different technigqDies classical way to view the
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problem is as a bidirectional dataflow analy$ig|04. Such a dataflow analysis propagates
information through the control flow graph of functions batbng and against the direction
of the control flow. Each program expression defines assatigpe propagation rules,
and a fixed point computation is performed to determine tha firpe mapping. In such
analyses, types are usually considered static. Dynamestge typically reduced to static
types through the use of a Static Single Assignment (SSA) for

function ¢ = foo(a, b)

c = [a bj;
end

function bar(x, y)

d = foo(x, y);

e = foo(x, y);

assert(ischar(e));
end

Listing 2.3 Types and matrix concatenation in MATLAB

Listing 2.3 shows an example of a program where type inference usingebtainal flow

as well as the MATLAB language rules can help us determingybes of variables. In this
example, we see that the functies callsfoo twice with arguments, y. The functiorfoo
simply performs horizontal matrix concatenation on itsuangnts and returns the result. If
we look at line 12, we can see that an assertion is in placestiarerthat is always a string
variable. Following the control flow backwards from this pipiwe can conclude that,
provided the program is correet,must be a string. Thus, from line 11, we can conclude
thatx, y are strings, because otherwise, the concatenation aperatiuld not work. If we
then follow the flow of the functiofoo forwards, we can conclude thats also a string,
since the result of the concatenation of two strings is alsiniag.

There are additional difficulties when performing type nefece on dynamic languages. An
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important problem is that due to constructs lé&kal , MATLAB'’s cd, as well as dynamic
loading and reflection features, it may be impossible to ktlogventire call graph of a
program ahead of time. Despite this, there have been etorssatically perform type
inference on dynamic languages such as MATLAB(1 and Ruby FAFHOY. Although
both of these approaches seem to ignore the aforementionbtem, they have shown
potential in detecting type errors ahead of time.

An approach which relates more closely to the McVM projethésuse of abstract interpre-
tation in the context of type inference. Abstract interatien is a static analysis technique
which simulates the execution of a program on abstract tdjather than on real values in
order to gain additional knowledge about the said program{/. In the context of type
inference, this means simulating the computations therpmgerforms using abstract ob-
jects representing possible types the program values &an Buch an approach to type
inference has been successfully applied to the ML prograngainguage®L02).

2.6 Run-time and Adaptive Optimizations

For a long time, statically compiled languages have beerlwiderceived as better per-
forming than languages executing under virtual machineswe¥er, this perception is
changing. Programming languages like Sun Microsystenva Bave shown that they can
in some cases perform better than statically compiled laggg. The reason for this is that
conceptually, VMs and JIT compilers have a big advantage ste¢ic compilers: whereas
static compilers can make educated guesses about a predudinné state, virtual machines
can actually observe this state as the program executes.

This advantage of VMs over static compilers can be techiyichfficult to materialize.
The more dynamic the implemented language is, the lessnaftoon is known statically
about the semantics of programs, the more work the virtughma needs to do in order
to efficiently execute program code. This translates intogased complexity of the VM’s
implementation. Despite this, virtual machines are insireggly seen as a way to make

2Performance of Java versus C++:
http://www.idiom.com/ zilla/Computer/javaCbenchméutinl
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software more portable, and to overcome the limits of stadiapilers.

The main limitation that static compilers have to face ig tlmmatter how many analyses
they can perform on a program, these analyses must be catisewm order to maintain
correctness. Static compilers cannot know what they cacmagervatively infer, which,
in practice, can be very limiting, especially where dynataitguages are concerned. Vir-
tual machines, on the other hand, can actively gather irdbamn about a program’s state
through instrumentation and profiling.

Several virtual machines, such as Jikes RVM, have impleedesystems where methods
of a program can be compiled at several different optimirakevels, and the virtual ma-
chine will choose which level to compile a given method atgoiasn profiling information
[AAF 105, SYKT05, GV0g]. Jikes RVM uses call-stack sampling and a cost-benefit pre-
diction model, and can recompile methods if its estimatesmgh. The general idea is that
compiling (or recompiling) methods at higher optimizatiewels is costly, and that the
speedup obtained by compiling a method at a higher optimizd¢vel should justify this
cost.

Recompiling methods at run-time as is done in some Java Mraehines may seem trivial

to perform, but it is sometimes challenging, because a nietiat we wish to recompile

may be currently executing. This has been made feasibleghr®n-Stack Replacement
(OSR), a technique that allows the call frame of an executingtion to be replaced so that
the new state is as expected by the recompiled methQdJ. This technique has been
implemented into Jikes RVM and is necessary to make run4taoempilation possible.

Going beyond the idea of multiple optimization levels, Le¢&ne [L96] have devised
an ML compiler that defers compilation of certain portiorisode. That is, most of the
program is natively compiled, but some portions of it will t@mpiled at run-time. They
have shown that despite the cost of run-time code generahiscan yield significant per-
formance benefits, because the generated code can bemefihd&nowledge of invariants
that were not statically known. This work has later beenredeel by others to specialize
Java bytecode at run-time, inside of a virtual machivi&’§9].

A more recent effort applies run-time code generation toraadyic language. The Psyco
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python virtual machine implements specialization by neEdis new specialization tech-
nique involves interleaving program specialization andceion Rig04]. Their special-
izer can inquire about facts such as the type of variabletevehprocedure is executing,
and depending on the result, potentially modify the congpdede of the said procedure
to be more efficient. One of their main goals was to eliminatemminterpretive overhead
through the use of JIT compilation without sacrificing dymafeatures of the language.

Similarly to the Psyco effort, those behind the TraceMonk®y for the JavaScript lan-
guage have focused their efforts on just-in-time spe@tbn based on type information
in order to increase performance. Their system is based gteadule interpreter that can
identify frequently executed bytecode sequences (trageey through loops and compile
them to efficient native code based on collected type infiongd GES"09]. A crucial
assumption of their system is that programs will spend miotedr time in loops, and that
the types of variables will remain mostly stable throughdkecution of loops. They have
achieved speedups of up to 25 times on some benchmarks. Egwhesir current VM does
poorly on benchmarks making extensive use of recursion.

It is technically possible to go very far with the use of adapbptimizations. One possi-
ble approach to optimization, as opposed to the use of fixaddies, is to dynamically
explore the space of all optimizations that can be applieal goven program or method.
Such techniques, often classified as forms of iterativexipétion, can iteratively generate
multiple versions of a given code segment and evaluate tHerpgance of each in order
to find the best performing on&EO1]. More recently, it has been shown that using ma-
chine learning techniques to focus iterative optimizatian drastically reduce the number
of versions needing to be evaluatéd3[C " 06).
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Chapter 3

Supported Language Features

The MATLAB programming language is highly elaborate. legitates specialized matrix
computation functionality, multiple ways to achieve objegented programming, but also
many more features, such as function handles, closurexlbas®2D and 3D visualization.
Beyond this, it also provides hundreds of library functioasell as a way to incorporate
Java code into MATLAB programs.

Due to the highly complex nature of this language, and th@ditions in the time frame
allotted to the completion of a Master’s thesis, the scopt@language McVM supports
has been restricted to a subset of the actual MATLAB langubigeertheless, this subset
is significant enough to be useful for real scientific compaoktes, as demonstrated by the
fairly extensive set of benchmarks we support.

This chapter outlines the main differences between ouremphtation and that of Math-
works. It provides important details about the features &fTMAB we support and those
we do not. We discuss supported data types, provided lidtargtions as well as un-
supported language features. We also outlines the diffesem semantics between our
implementation and the original MATLAB language. We explaow and why our exe-
cution model and our implementation of specific MATLAB camusts differs from that of
Mathworks.
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3.1 Supported Types

MATLAB uses double precision matrices by default; if the gn@mmer wants any other
kind of numerical matrix (excluding complex matrices), resho explicitly request it.
Implementing new matrix types means writing programmindecto handle each type of
matrix appropriately for each kind of matrix operation thedguage offers. Hence, we have
chosen to support only the core matrix types in order to rediie required programming
effort and simplify our implementation.

Support is not provided for integer matrices, or floatingaponatrices with single preci-
sion. There are also no object-oriented features at thrst pand thus no structs or classes.
The matrix types that are supported are logical arrays,achar arrays, double precision
floating-point matrices (64-bit per element) and doubleigien complex number matrices
(128-bit per element). McVM also integrates cell array (meas of pointers) and function
handle types.

3.2 Supported Features

Our implementation supports most of the non object-orerigatures of the MATLAB
language. The traditional, f or, whi | e andswi t ch control statements are all supported.
The use of range expressions in array indexing to creat@asays is supported. Extensive
support is provided for cell arrays as well as for matrix @eroation operations. Basic
support for string handling and file 1/O is also provided.

We also provide support for calling functions with a varebumber of arguments and re-
turning a variable number of arguments from functions. \Wanathe use nested function
as well as the use of multiple functions per source M-file.slpossible to create func-
tion handles to any function, including library functiorSlosures can also be created by
creating a handle to a nested function or by using lambdaeszmns.
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3.3 McVM’s Execution Model

In MATLAB, scripts operate on the caller's environment andted functions can modify
variables in the calling function (see secti®ri.3. Some library functions such asal
can also modify the caller’s environment. For simplicitpdafor philosophical reasons,
we have decided to go with a slightly different execution elod/Me find that allowing
callees to modify a caller function’s environment violatee encapsulation principle. It
allows unintuitive behaviors where callees can have usgea side effects, and is also
very unfriendly to optimizing compilers.

In McVM, no callee may modify variables in the caller’'s scapeenvironment. Scripts
operate in the global environment, and can only touch gledahbles. The same goes for
library functions. As for nested functions, they are ablegtad variables from the caller’s
environment, but assigning them a value will create a bimdmthe local environment
instead of modifying the value of the caller’s variablesisipreserves a sense of separation
between caller and callee.

We have found that these changes are not an issue in prattmee of our benchmark
programs make use of these kinds of side effects. Prograsnaezly seem to intend for
a callee to modify variables in the caller. In fact, in MATLAB,is an issue they have to
be careful about (to avoid unpredictable errors). The &tions we have placed on library
functions also make them more compatible with our optinnirascheme: they cannot
unpredictably assign any value to any local variable.

3.4 Library Functions Provided

MATLAB provides a wide library of basic functions for I/O amdmmon operations. Ta-
ble 3.1 shows a list of the MATLAB library functions we support in M8A/ These are
re-implementations of the same functions provided as datieo Mathworks MATLAB
environment. At this point, not all of these functions pawiall the functionality of their
Mathworks equivalent, but they support the most common ases: Fairly extensive doc-
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Table 3.1 List of supported library functions

abs eval fprintf min sin
any eps i mod size
bitwsand exist iscell not sort
blkdiag exp isempty  num2str  sprintf
cd eye isequal numel squeeze
ceil false isnumeric  ones sgrt
cell fclose  length pi strcat
clock feval load pwd strcmp
cos find log2 rand sum
diag fix Is reshape system
disp floor max round tic
dot fopen mean sign toc

umentation about the behavior of these library functionpr@/ided on the Mathworks
website, as part of the online MATLAB documentation.

3.5 Unsupported Features

Although McVM is capable of running non-trivial benchmarik®m a language standpoint
we have only implemented a small fraction of the hundreds ATMAB library functions.
McVM does not yet support object oriented programming anesdwt handle integration
with languages other than C and C++. Those are some of the rogisius limitations of
our implementation. Our system also does not provide a dpuent environment as rich
as that of MATLAB: we do not supply a code editor, a debugge@BD plotting features.

Some of these limitations will likely be overcome in the na#ure. Implementing new
library functions in C++ is currently very simple. It would lpelatively easy to add ob-
ject oriented support to McVM. Basic support for MATLAB sttagwithout JIT compiler
optimizations) could likely be implemented in less than@@fies of code. Supports for
classes could be added relatively easily as well; it coklelyi be be implemented in less
than 2500 lines of code. Other features, such as 2D plottirg peing implemented by
other members of the McLab team as this thesis is being writte
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3.6 Dynamic Features

MATLAB contains a number of dynamic features we have limitedrder to ensure good
performance. We have briefly mentioned in secioBithat we have chosen to restrict the
eval language construct so that it can only affect global vaesbFrom an implementation
perspective, this was done because it fits better with oumaggtion model. Theeval
construct, in its unrestricted form, can read or write to lagal variable based on input, in
ways that often cannot be predicted when a function is cadpilhis destroys much of the
information an optimizing compiler could rely on (type infieation, reaching definitions,
live variables, etc.). Thus, we have chosen a compromisehwhakes optimization easier
and still allowseval to be useful.

Another such dynamic feature found in the MATLAB languagéhiscd function. This
function changes the current directory based on input, lamsl thanges the currently visi-
ble functions. This function is also unfriendly for an opizer, because it means that unless
we can be certaied will never be called while a function runs, we cannot knowangile
time that a given symbol will always refer to the same functidhis is particularly prob-
lematic because we may want to know ahead of time what typégea gallee function
takes as input and returns as output, for example.

At this time, we have chosen to circumvent this issue by ngakirso that symbols are
looked up and bound to specific callee functions at compitatime. Thus, if thecd
command is issued, it cannot undo function call bindings liaze already been made. It
can, however, allow access to functions that were not defsedmpilation time. This
behavior may seem restrictive, but we have found that it wavkll in practice, and is
perhaps more intuitive than MATLAB’s default behavior.

The compromises we have made correspond to real issues whemes to compiling
dynamic languages. It may be possible to avoid making thetharfuture by resorting
to schemes where the JIT compiler will “fall back” to inteegation when commands like
cd andeval are issued. Alternatively, techniques like on-stack regtaent may provide a
way to circumvent the limitations of our compilation modséé sectio8.2.5. However,
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at this time, we consider them reasonable as most of thealiimits they impose can be
easily circumvented and rarely create compatibility issaepractice.
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Chapter 4

Virtual Machine Architecture

This chapter examines the design of our virtual machine &hadmpiler in detail. We
begin with a discussion of the design goals on which our dedégisions were based. This
is followed by an overview of the overall architecture of @utual machine and its division
into sub-components. We then explain the interface betweevM and the front-end of
our compiler, the intermediate representation used by ysiiesn and the design of our
interpreter and run-time environment, as well as our imtggtion strategy. Finally, we
conclude with a detailed discussion of the design of our difigiler and its compilation
strategy.

4.1 Design Goals

One of the most important goals behind our virtual machirsgtewas to aim for a simple
and easily extensible design. Our architecture reflecssgbal: the JIT compiler was built
as an extension of the interpreter, somewhat similar to tnetivephc compiler was built

[BdVGO0Y. This makes it possible to add new data types or statemerttsetsupported
language by modifying only the interpreter, and not the dipiler. The JIT compiler can
later be modified, if necessary, to gain performance berfedits additional optimization

opportunities.
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Language design largely focuses on performance. We haga takpiration from the C++
programming language, which was designed with the clegalgd objective that the pro-
grammer should not pay a performance cost for features Heeat@es not use. In McVM,
we have striven to minimize performance costs incurred byfM®B’s more complex and
dynamic language features. This is achieved partly thraiglise of our type-driven just-
in-time specialization scheme (see sectlon 3, and partly through our interpreter fallback
mechanism (see secti@n7.l). Some costly dynamic features are still interpreted, bat t
JIT compiler has been designed to optimize the clearest arsd common performance
bottlenecks as well as possible.

We have also striven to keep our system interactive. Ouualinmachine provides an
interactive environment where commands can be typed atrtragt, and new code can
be introduced on the fly, similarly to Mathworks MATLAB impteentation. This is unlike
some previous attempts at compiling MATLAB into a targetgaage like FORTRAN

[DRG'95, RP9q, for example. These approaches can yield great perforenbanefits,

but they require whole-program static analyses which arempatible with an interactive
environment.

Some technical choices were made to balance compatibiiityttve MATLAB language
with design simplicity and “cleanliness”. As such, we do moplement a “pure” subset of
MATLAB (see chapteB). Rather, we implement a close variant which we consider to be
more intuitive for programmers, less error-prone and moaetral from an implementa-
tion perspective. Our language variant matches the MATLABa@ntics in all MATLAB
benchmarks programs with which we have had to deal, and mkekt, lin the vast majority

of real-world programs.

We note that reducing compilation times was not a high gyiavhen designing our VM.
MATLAB being a language aimed at the scientific community, lveee judged objective
performance in terms of total running time to be more impdrthan real-time interactivity.
Scientific programs can potentially run over very large dagts, sometimes for hours.
Thus, we have deemed it acceptable to use up to several seabooimpilation time for a
given program, since it could, in the end, save up to sevenaidof total execution time.
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4.2 Architecture Overview
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Figure 4.1 Structure of the McVM Virtual Machine

The illustration in figure4.1 shows the overall structure of the McVM virtual machine
implementation. At the core, McVM’s implementation of nattypes relies directly on
a set of mathematical libraries (ATLAS, BLAS and LAPACK) to ilement fast matrix
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and vector operations (matrix multiplication, scalar nplitation, etc.). All language data
types and Internal Intermediate Representation (IIR) tymestbe Boehm garbage col-
lector library for garbage collectiorBE07. Our JIT compiler also relies on the LLVM

framework to implement low-level JIT compilation (emissiof machine-specific code)
[Lat0Z. McVM also depends on the McLab front-end, because thepr¢er uses it to

parse interactive-mode commands as well as source code farth of M-files.

Internally, both the interpreter and the JIT compiler retytbe language core to define the
basic primitives on which they operate. This is the Intein&rmediate Representation
(IIR) tree, which defines the forms valid programs can take, the primitive data types
the language supports. The JIT compiler itself depends @mtierpreter because it does
not emit compiled code for all operations, it sometimes ustespreter fallback to evaluate
code for which there is not yet compiler support.

The functionality of the interpreter is divided into integpation logic and state manage-
ment (house keeping). The JIT compiler manages the funeBosioning system, emits

LLVM code for the statements it can compile, and performenrteter fallback for those

it cannot. The JIT compiler also largely relies on a set ofiys®s to gain additional in-

formation about source programs being compiled. These/seml(live variables, reach-
ing definitions, bounds check alimination and type infesrare crucial to generate high-
performance code.

We have chosen to implement McVM entirely in C++. This choi@swnade in part be-
cause C++ allows low-level access to the way its data typest@ared in memory and offers
a relatively high level of performance, both very usefulrelageristics for the implementa-
tion of a virtual machine. However, another important metiivg factor was the availability
of the LLVM framework itself. This powerful compiler buildg framework was crucial to
the timely implementation of our JIT compiler.
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4.3 Front-End Interface

The McVM virtual machine only implements the back-end padur MATLAB compiler.
The actual lexing and parsing into an Abstract Syntax Tre&T(Ais done in a front-end
program, implemented in the Java programming language. fidnt-end program also in-
corporates several analyses meant to perform high-leme$fiormations and optimizations
on MATLAB source code.

When the virtual machine is started, it launches a front-endnam instance and connects
to it through a TCP socket. This interface was made sockegebfis portability. When
source files or commands need to be parsed, a request is skatftont-end, which then
returns the source code in a pre-parsed AST high-levelradrate Representation (IR)
encoded in XML format.

4.4 Intermediate Representation

The internal intermediate representation (IIR) used by Mciiyl the interpreter, the JIT
compiler and the analyses), is a simplified and transfornggsion of the original source
code’s Abstract Syntax Tree (AST). Due to its close resendddo the original source, it
is machine-agnostic in nature and can easily be printednmamireadable form.

In terms of implementation, all IR nodes inherit from a coomsuperclass [IRNode. The
lIR is defined by the IIRNode class and all its subclasses. & hesorganized in a hierar-
chical order to define functions, statement sequencegnstaits (including control state-
ments) and expressions. The IIRNode class and all its sidedame garbage-collected,
making it easier to write IIR transformation passes, asmiekates the need to keep track
of which nodes should be deleted upon replacement.

In order to keep the virtual machine design simple, the if®T (produced by parsing
the source), is simplified in a few ways. Among these tramsédions,i f - el sei f - el se
chains are transformed into multiple nesigd el se statements with only two possible
branches eaclwi t ch statements are transformed into equivalent languagercotsand
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bothf or andwhi | e loops are transformed into a single loop form that is stmatlycloser
to thewhi | e construct.

Some parts of the IIR tree are also annotated to make subsespezution or compilation
easier. For example, all instances of tne keyword, used to mark the end of a numeric
range (effectively an expression), are annotated suchath#ite possible symbols it can
refer to are all known at execution time. This is useful beeatlhe possible bindings of
the keyword changes based on its position in the source cbaese bindings would be
difficult to keep track of in our interpreter, because theipteter only looks at small IR
subtrees during execution, but is fairly easy to pre-compiead of time.

The interpreter component of McVM uses the IIR tree as-igrdhe previously described
simplification and annotation passes have been performedeter, the JIT compiler re-
quires further transformations. Namely, prior to JIT-calampon, the IIR tree is transformed
so that all expressions are in 3-address form. This is a #igtblform where expres-
sions cannot contain sub-expressions other than symhaisencal ranges and constants
[ASU8E. Note that while 3-address form expressions are usualigedd to a maximum of
3 operands, some expressions, such as function calls,lanedlan potentially unlimited
number of operands.

4.5 Interpreter Design

The interpreter component of McVM is implemented in a vem@e and straightforward
way. It performs naive interpretation directly on the IIRRdr This interpretation is per-
formed in a recursive manner, that is, evaluating a staterseults in a pre-order traversal
of the corresponding IIR subtree of expressions. When aifumc$ executed, all of its
statements are recursively interpreted in sequence.

Trees of expressions are used to represent compound expesteaf nodes in such a

tree can represent constant values or variables. VariabdeBound to data objects which
store their type and value, and any leaf node operating omom®re variables generates a
new such object to store the result of the operation. Intdrate nodes represent function
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calls or arithmetic and logical operators that operate enrélsults of the evaluation of their
subtrees, again producing data objects to store the refshié @peration. All data objects
are garbage-collected.

The interpreter manages program variables, both local biwhly through “environment”
objects. These objects are essentially hash-maps thatymdpbidentifiers to pointers to
objects. They are a straightforward way of binding and lagkiip symbols at run-time.
They offer the advantage of a fairly quick O(1) lookup timegdaan be grown at run-time
without a need to pre-allocate or pre-calculate where higlare to be stored.

Environments are also extensible, meaning an environnigatibcan have a parent envi-
ronment. That is, environments are a simple mechanism tteimgnt recursive scoping:
when looking up a symbol in a given environment object, ifsiniot found, the symbol
will then be recursively looked up in its parent. Thus, in thierpreter, stack frames for
functions are typically implemented by creating an envinent object that extends another
global environment object (containing global variabledings) when a function is called.

This mechanism has the advantage that it is highly flexibbe eikample, it makes it trivial
to implement an “eval” command that can create unanticgphitedings in a function’s call
environment at run-time. It also serves as a useful “blazk-Implementation of symbol
bindings: functions with unbound symbols can be executedout regard for where and
when those symbols will be bound.

In addition to its role as a basis or reference implemeniafitw the implementation of
our JIT compiler, the interpreter also serves housekeepileg. It takes care of loading
MATLAB files on-demand, executing interactive-mode comuagrhosting library func-
tion bindings, maintaining bindings to global variablet, ét also has the role of filling in
and interpreting parts of the language that the JIT compdenot fully compile.

Library functions in McVM are currently all implemented aatiwe C++ functions, so as
to maximize performance. These functions do not operatensimanment objects like
program functions, but rather take in a dynamically alledaarray of object pointers as
input, and also return such an array as output. As such, taey support for multiple
input and output values, as well as variable arity.
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4.6 Program Analysis Framework

The JIT compiler component of McVM requires multiple analy$o be run on the IR tree.
These analyses, which include live variable analysis, hiegcdefinitions analysis, type
inference and bounds check elimination serve to gathettiaddl information about the
input source which can then be used to allow specific optiioiza. All of these analyses
were designed as forward or backward flow analyses, whictypieally performed over a
transformed Intermediate Representation (IR) format call€dntrol Flow Graph (CFG).

Instead of transforming our IIR tree into a CFG, we have chés@erform structured flow
analyses directly on the IIR. This turns out to be surprisiregsy in practice. The only
constructs requiring a fixed point computation are loop% ifformation flow is otherwise
linear from one statement to the next. Special care mustkes i gather data flow sets
at return, break and continue points, because these statenlisrupt the normal control
flow.

While analyzing one specific function, some analyses (sutypasinference) may require
callees to be analyzed. This has the potential of creatifngite loops, or to waste com-
putational time analyzing specific functions over and o¥feat {unction is called by many
others). To get around this issue, we have implemented &egsimylass (the analysis man-
ager) to cache analysis results. Whenever a function is zed/\the analysis results are
cached. Different results may be cached for each functiosioe (see section.7.3.

The analysis manager also keeps track of which functioncamently being analyzed.
This way, if analysis information is requested about a fiomctvhich is already being
analyzed by the same analysis, the analysis manager withrat“bottom” value to avoid
infinite loop scenarios. The “bottom” value is defined on agmalysis basis. It can either
mean no information, or whatever the analysis can asseut alfanction without requiring
recursive calls.
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4.7 JIT Compiler Design

This section discusses the design and internal workingsio8@ compiler. We discuss
the incremental strategy used to build our compiler. Thifollewed by discussions of
its code generation strategy, our just-in-time code versg system, and the additional
optimizations our JIT compiler benefits from. The workindgle type inference system
used by our JIT compiler are discussed in chapter

4.7.1 Incremental Construction

We have chosen to build our JIT compiler on top of the intdgreas an incremental
process. This essentially means that our interpreter wsigred, at the core, to be able
to always fall back to interpreting sections of code it carcmmpile, mixing sections of
both compiled and interpreted code as part of the compilatfoa given function. This
is an incredibly convenient design, because it has allovgetd build the JIT compiler in
multiple steps, while still being able to test its properdtioning at each point, and able to
compile all programs the interpreter can run.

The starting point for our JIT was a compiler that interpmisry single statement. For
each statement it needs to compile, the JIT inserts a cdletprtoper interpreter function
to interpret this statement. From this point, it is easy td edmpilation support for any

kind of statement, without ever needing to be able to conglilexisting statement kinds,

or even all possible forms of a given statement. For exangpkarly version of our JIT

supported compilation of assignment statements assigmimige variable only; assignment
statements assigning to multiple variables were integpret

The only drawback of this interpreter fallback system ig 8ecial care had to be taken
to interface with the interpreter. Interpreter functiorigen take as input a statement or
expression to evaluate along with an environment objectatoing the current variable
bindings (see sectiof.5). The JIT compiler is designed so as to store variables gatue
registers, with the appropriate type (i.e.: values knowbdascalar integer are stored as
integers, not as pointers to matrix objects). Thus, befarsgerpreter function is called
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to evaluate a statement or expression, all the variablestdtement or expression uses
must be stored into value objects and bound into an envirohwigiect. In the case of
assignment statements, the JIT must also keep track of whrdibles will then be written
in that environment object. All of this is managed throughagadstructure we call the
variable table.

4.7.2 Code Generation Strategy

Our JIT compiler is built on top of the LLVM compiler-buildgnframework [at0Z. This
framework handles the low-level parts of the code generatids input, it requires pro-
gram code specified in a RISC-like Static Single AssignmenA}S&m, and translates
it, at run-time, into machine-specific code. It also perfsraptimization passes on the
code, both at the machine code level, and higher levels.nltfoa example, perform con-
stant propagation, dead code elimination and eliminateesedundant operations. As
such, it greatly simplifies the construction of a JIT compblg completely hiding much
of the platform-specific details and providing low-leveltiopzations. Broadly speaking,
our work in terms of code generation consists of translatimglIR tree into efficient input
code for LLVM.

The JIT compiler generates code for a function in a recursiganer, by traversing its IIR
tree. Specialized methods generate code for each kindtehstat and expression as the
tree is traversed. Whenever the JIT compiler does not knowtb@empile efficient code
for a statement or expression, fallback code is generatéchwtill invoke the interpreter
to execute that specific statement or expression. At eapho$tihe compilation process,
the JIT needs to take special care to know how each live Jarigistored. This is achieved
through the variable table, which maps symbols (the veagisalmes) to pairs of LLVM
value objects and McVM type identifiers.

The variable table is needed because variables can be staléfrent ways. They could
be stored in an environment object (see sedfid), or they could be stored in an LLVM
virtual register (on the stack, essentially). If they amretl on the stack, they could either
be stored as pointers to objects stored on the heap (negdesanatrix objects), or as
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scalar integer or floating-point values, if we know enougbuliheir type. The LLVM
value object tells us how a variable is stored, but the McVdetydentifier is needed to
distinguish what actual language type the variable hase Mt the specific type may be
unknown in some cases, if the available type informationssifficient to determine it (see
chapters).

When interpreter fallback code is generated for an expressia statement, the variables
this expression or statement may use are written in an envieot object, and the variable
table is updated to reflect this. If these variables are reeatlex later point, they will
be read from the environment object and converted to the gffistent storage mode, at
which point the variable table will be again updated to reftats change. Note that if a
function never needs to perform any interpreter fallbackrapons no environment object
will be created for this function. Thus, the interpretetidatk mechanism does not incur
any penalty for functions which do not need to use it.

Special care needs to be taken when compilingel se and loop statements, because
these produce multiple possible control-flow paths. Thecdifpiler actually generates a
variable table for each possible path. Thusj anel se statement produces two variable
tables which need to be merged into one. This is done suchifthatariable is locally
stored (not in an environment object) in any of the variabsaneeding to be merged, it
will be locally stored in the final variable map. The mergimggess also ensures that the
optimal storage mode is selected for all variables. Noteithpractice, the way variables
are stored most often does not change at merge points.

In the case of loops, the process is similar, except thaétimery be many more loop exits
due to the existence ofta eak statement in MATLAB. Control-flow paths also need to be
merged at the loop entry. In this case, this is done so thatdhable map states of all
control-flow paths match that of the original control-flowtipghat entered the loop. This
is because the loop code is generated first according to theamtrol-flow path leading
to the loop. Thus, for this code to remain valid, any othertiaflow paths leading to the
loop entry need to match the variable map state of the enthy gaur approach permits the
compilation of loops in a single code generation pass.
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One important optimization in our compiler is the use of typormation to generate

optimized code for binary expressions. MATLAB makes thdidgion between scalar
values and larger matrices invisible to the programmennauattempt to store scalar vari-
ables on the stack whenever possible, for performancemsa®dhenever the JIT compiler
knows that a binary expression occurs between two scalebles, it will attempt to gen-

erate specific machine instructions to perform this openati his allows scalar additions,
subtractions, multiplications and divisions to be congiédficiently, without generating

intermediate matrix objects to store the result.

4.7.3 Function Versioning

The researchers behind the PsyBigD4] and TraceMonkeyGEST 09 virtual machines
have realized that in order to efficiently compile programten in a dynamic language, it
is essential to expose information about concrete typedingbe said programs. We have
independently come to the same conclusion regarding theitamon of MATLAB pro-
grams and devised a just-in-time specialization schemeupdIT compiler which makes
use of both run-time and inferred information about progtspes. Our specialization
scheme bears some similarity to the one used by the Psyco VM.

Our specialization strategy begins by “trapping” functicalls made through the inter-
preter. Any command made in interactive mode runs throughrterpreter. If the com-
mand is a call to a function (and not a script), the interpretd (if JIT compilation is
enabled) try to let the JIT compiler handle the call. When ka@ppens, the JIT compiler
will build an argument type string from the input argumetsite function. It will then at-
tempt to locate a previously compiled version of the funcheatching this argument type
string. If none is found, a new version will be compiled, Spézed for the given argument
types. Once compiled, the function will be called with thedfied arguments.

When compiling a specialized version of a function for a siieanput argument type
string, the JIT compiler makes use of a type inference arspass (see chaptBy to infer

information about the possible types of variables at eveigtgn the function body. The
JIT compiler will then make use of this type information tangeate more efficient code
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than would be possible without it. Dispatching overheadm=aaliminated, and some scalar
variables can be stored directly on the stack, instead abtsbred as objects (of unknown
type) on the heap.

While compiling specialized function versions, the JIT caepwill also be able to deter-
mine information about the input parameters of functiontedarom the function being
compiled. It can then compile specialized versions of thkees of the current function as
well. Thus, our scheme specializes functions based on amguiment types when they are
called, or when the JIT compiler knows they could be callesnfithe function currently
being compiled. The vast majority of callees can be resoatezbmpilation time, and so
most of the compilation and specialization happens wherabigfunction of the call graph
is called. If a new call to a function is made through the ipteter with input arguments
for which no specialized version exists, a new one will be pibaa. If the function has
any callees, new versions may or may not be recompiled faretlas well, depending on
whether the input arguments to those would change or not.

function s = sumvals(start, step, stop)
i = start;
s =i
whil e i < stop
i =1 + step;
S =s +i
end
end

Listing 4.1 The sumvals function

function s <scalar int> = sumvals(start <scalar int>, step <scalar
int>, stop <scalar int>)

i <scalar int> = start;
s <scalar int> = i
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while i < stop
i <scalar int> = i + step;
s <scalar int> = s + i
end
end

Listing 4.2 The type-annotated sumvals function

As an example of how our function versioning works, take &labthesumvals function

in listing 4.1 This function is meant to sum numerical values in the rangiagyfrom
start  to stop , inclusively. Since MATLAB does not make variable types leip we
do not know what types any of the variables (including theutnparameters) have. The
function could, in theory, sum over integers, floating-paalues, matrices of integers or
floating-point values, or even complex numbers. Thus, inhoae efficiently compiled
as-is. The JIT compiler would have to assume the worst-gdsere we are summing over
matrices, which clearly cannot fit on the stack and must beedton the heap. It would
also need to make calls to expensive dispatching code foy egeration performed on
any variable.

Now, imagine that this function is called from interactivede as followss = sumvals(1,

1, 6); . From this point, we know that each argument to the call isséasinteger. The JIT
compiler can then use type inference to logically conclinde &ll variables in the function
are in fact scalar integers. From this point, we can imagityp@-annotated version of the
sumvals function (see listingt.2). This function can be efficiently compiled. All variables
are easily stored on the stack, and there is no need to maleagxp dispatching calls,
because there are efficient machine instructions to add @mgare scalar integer values.
Thus, a specialized version can be compiled based on theangument types, which will
likely be hundreds of times faster than its non-specialzmathterpart would have been.

The obvious downside is that this scheme has the potentggnerate many specialized
versions of a function, with each requiring additional cdatpn time, and potentially
impacting the performance of the instruction cache. We @k that this is not the case
in practice (see chapté). From our observations, MATLAB programs tend to have few
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long functions and fewer call sites than code written in ofiregramming languages (see
section2.1.5. It also seems that MATLAB programmers tend to use funstitor very
specific purpose (e.g.: integrating a specific kind of fuorgkj and thus rarely call functions
with very different input argument types. The main strengftbur specialization scheme
is that most function get specialized only once, and thavéis¢ majority of the symbols in
these functions can be typed if the input argument typesrare/k.

4.7.4 Additional Optimizations

We have already mentioned in sectii@.2that our JIT compiler can sometimes make use
of type information to map scalar arithmetic operationsftwient machine instructions.
This is not the only optimization that makes use of this infation, however. We have also
implemented optimized array access operations and ogdmzpping of library function
calls. These optimizations also rely on information preddy the type inference sys-
tem and function versioning framework and try to generat@mped code when enough
information is available to guarantee their soundness.

MATLAB possesses a sophisticated array indexing schenteatttavs programmers to
read or write to n-dimensional slices (sub-arrays) basehonges of indices specified in-
dependently for each dimension. This system makes theflildATLAB programmers
easier, but requires fairly complex logic to work propefttymany cases, our JIT compiler
uses the interpreter to evaluate complex array reads aneswwhich comes with some
overhead. However, when the JIT compiler can determineatingatrix is being written to
or read from using scalar indices (e.g.= a(i); wherei is a scalar), it knows that the
value being read or written must also be a scalar. In this, ¢agee type of the matrix is
known, it can generate optimized code to read or write the eaue directly. It can also
use the bounds check elimination analysis to eliminate cessary checks.

Library functions are implemented in our virtual machinenasive C++ functions which

take as input (and return as output) dynamically allocatead/a of pointers to data objects.
This is sometimes largely inefficient because each calld@sdliunctions requires the arrays
to be allocated. Also, in the case of scalar values storeth@mistack, it means they must
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be wrapped into objects before being passed along, andahahrvalues may need to be
unwrapped in the reverse fashion. Furthermore, the libiamgtions we provide are also
expected to be able to operate on both matrices and scalagsyand thus incur some
overhead, because they must be able to loop over all thessphasent in a matrix.

To address these issues, we have devised a scheme wheré&zegtirarsions of some
library functions can be registered with the JIT compilesdzhon the types of input argu-
ments they take as input, and the types of their return valéeen a library function call
is encountered, the JIT compiler will attempt to locate atinegzed version of this function
with input types and return value types matching those redun the current calling con-
text. If one is found, it will be called instead of the gengpalpose version of the library
function. An obvious example where this is beneficial is i@ tase of functions likebs

or sin . If these functions are called on scalar values, we canttiiretsert a call to the
native C++ version of these library functions.

46



Chapter 5

Type Inference System

In this chapter, we explain in detail the type inference wsialused by the just-in-time
type-based specialization mechanism built into our JIT gitan We begin with a sim-
ple description of the analysis, what it infers, how it iSeli€nt from other type inference
schemes and how it is used by the JIT compiler. This is folthlwg a more formal ex-
planation of the actual analysis process and its roots itratisnterpretation. We supply
a detailed example of our type inference analysis beingiegpb a simple MATLAB
program. Finally, we conclude with an explanation of thadation strategy used to em-
pirically validate the correctness of the analysis.

5.1 Analysis Design

The type inference analysis our JIT compiler employs wagdesd to rapidly infer types
as precisely as possible, without making too many assumgpabout the programs being
analyzed. It works on a per-function basis, with the assionghat the whole program
is not necessarily known at run-time, and new functionsddel loaded at any time. The
analysis assumes that the set of possible types for eachamgpument of a given function
are known, and infers the set of possible types for everpbégiat every point (before and
after every statement) in the function, given those possiigut argument types.
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The type analysis can be run multiple times for the same fomctjiven different possible

input types each time, thus inferring the types for multiygesions of the same function.
It can also be provided with different levels of informatiabout the input types. Itis

possible, for example, to specify that we know nothing of plossible types of a given
input argument. It is a conservative analysis, and thuggslts are provably true in every
case, for any input values, provided that the input typeicgins are met.

The analysis is based on abstract interpretation. Thatissaiforward flow analysis which
propagates sets of possible types for variables througty @aessible branch of a given
function, through every statement of that function. Whiléndathis, it is simulating the
effect that these statements would have on the possible tffibe variables present in the
function. The result of every operator is accounted for, g, the analysis is, in a way,
“simulating” what would be happening at run-time. It perfar this simulation in a such
a way that the results are always valid, accounting for elseaych that could possibly be
taken at any point.

This is different from most other type inference analysekjctv often rely on whole-
program analysis, assuming the entire program is knownnatinee, and use a constraint-
solving mechanism to narrow down the possible types of klaga It is also different
because it takes into account that the type of a given variedoh be different at multiple
points of a function. Finally, unlike some type analysedpis not assume that the program
is correct. Should there be a programming error (resultirgni exception being thrown at
run-time) in a program’s code, the analysis results areaguaed to be correct up to that
point.

Our JIT compiler uses data provided by this type inferen@dyais to implement a just-in-
time function specialization scheme (see sectiohd. The more information the analysis
provides about the concrete types of program variableantire interpretive dispatching
and storage overhead can be eliminated, and the fastersihiémg compiled code will be.
In practice, it can make an enormous difference in termsalfwerld performance results
(see chaptes).
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5.2 Flow Analysis Specifics

5.2.1 Abstract Domain

Abstract interpretation is a way to simulate the executibprograms over an abstract
domain. In the real domain of MATLAB programs, variables #tedent program points
are bound to actual values (data objects). In our abstrantag variables instead map to
sets of possible types that they could hold at different @ogpoints. These sets contain
zero or more type object storing information about a po&étype the specific variable can
have.

T Unknown type, could be any

/\

Function handle Matrix-like types
Cell array Matrix types

Char array Logical array Double matrix Complex matrix

="

No information inferred

Figure 5.1 Hierarchical lattice of McVM types

Each type object in a set represents a specific MATLAB langugge, such as character
array, floating-point matrix, complex number matrix, et@ufe 5.1 represents the hierar-
chical type lattice of McVM types these objects could ha¥a tiype set contains multiple
type objects, it means that the variable whose potentiasygre represented by the set at
that program point could be one of the several types repreddry each object in the set.
The empty set is the element of the type lattice, representing situations wher@for-
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mation has been computed yet. The set of all type object®is telement of the lattice,
representing the situation where the type of a variable ado® determined.

Table 5.1 Description of type object fields

Field || Meaning/Description | Default

type An element of the set of possible McVM dataUndefined
types.

2D Flag whose value applies to matrix types on|yfalse

A True value indicates that the matrix has|jafunknown)
most two dimensions. False means it is rot
known how many dimensions the matrix has

scalar Flag whose value applies to matrix types on|yFalse
A True value indicates that the matrix is a scala{unknown)
False means the matrix may not be scalar.

integer Flag whose value applies to matrix types on|yFalse

A True value indicates that the matrix containgunknown)
only integer values. False means the matrix may

contain non-integer values.

sizeKnown|| Flag whose value applies to matrix types onlyfalse
A True value indicates the size of the matrix|igunknown)
known. False means the size is not known.

size Applies to matrix types only. A vector of inter Undefined
gers storing the dimensions of the matrix. This

is only defined if the sizeKnown flag is set fo
True.

handle || Appliesto function handles types only. Storeg aull  (un-
pointer to the function object the handle point&nown)

to. This value can be null if the specific functign
is not known at inference time.

cellTypes || Applies to cell array types only. Set of type op-Empty set
jects representing the possible types the celljafunknown)
ray stores.

The type objects are more than mere identifiers for languggest they also store various
flags and attributes giving additional information abow flossible values a variable may
hold. Table5.1describes the fields stored in type objects. These fieldsotaoid arbitrary
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values. For example, if thecalar flag is set to True, then thezeknown flag must also
be True. However, thed flag does not necessarily indicate that the matrix size isvkno

For each statement in a program, our analysis will produceppmg of symbols to sets
of type objects representing the type that each variablearctirrent function may hold
before the statement is executed. FormallQ ik the set of all possible type objects &&d
is the set of all symbols, then our analysis operates in timeadio of subsets df1, where
M is the set of all pairs of symbols and subset©gqimappings of symbols to type sets):

M= {(st)]se SteP(O)} (5.1)

5.2.2 Merge Operator

A merge operator is required to implement inference rulesdatrol flow statements. This
is because when multiple control paths join at a given paoiatprogram, our analysis needs
to merge the mappings of symbols to type sets for each of twgeol flow paths into one
single mapping. In our analysis, the merging of two type nivaggis accomplished by
performing, for each symbol, the joining of the type setsdach type mapping:

mergéM; C M,My C M) = {(s,t)| (s,t1) € M1, (S,t2) € Ma,t = join(ty,t2)}  (5.2)

The joining of type sets is accomplished by using set unioa eerge operator and then
applying a filter operator to the result. If one of the inpulies to the merge operator for
type sets isl', then the result will b&™ as well, because this value signifies that a variable’s
type cannot be determined. However, if one of the merge sakie, then the result will

be the other value, becausesignifies that type information has not yet been determined.
In the case where neither values a@rer L, then the result is simply the union of both type
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sets:

join(ty CP(0),t2 CP(0)) = filter (ty Uty) (5.3)

The filter operator can be defined in terms of pseudocodeifewls.1). Its purpose is to
merge all type objects in a type set having the same McVM typeone. It does so in a
pessimistic way, that is, if any of the type objects to be redrigas an unknown value for
one of its flags, the merged type object will have the unknoalne. Properties are only
kept if all objects hold them as known. For example, if we dterfng a type set containing
multiple double matrix type objects, the resulting type object will have iheger flag
set to true only if all of the original matrix type objects did

function TypeSet filter(TypeSet S)
repeat until S is unchanged
for each pair (s1, s2) in S

if sltype equals s2.type

s = new TypeObject();
s.type = sl.type;

s.2D = s1.2D AND s2.2D;

s.scalar = sl.scalar AND s2.scalar;

s.integer = sl.integer AND s2.integer;
s.sizeKnown = sl.sizeKnown AND s2.sizeKnown;

i f sl.handle equal s s2.handle
s.handle = sl.handle

el se
s.handle = null;

end
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s.cellTypes = merge(sl.cellTypes, s2.cellTypes);

renpve sl from S;
renpve s2 from S;
add s to S;

end
end

return S;
end

Listing 5.1 Pseudocode for the type set filter operator

5.2.3 Inference Rules

Our type inference analysis follows inference rules to wheiee the mapping of possible
variable types after a given statement based on the posgpds before that same state-
ment. Each kind of statement has an associated type inferafecthat takes the mapping
of possible input types as input and returns the mapping sdipte output types as output.
Expression statements, suchdap(3);  use the identity type mapping, that is, the output
types they produce are the same as the input types.

The statements that are at the core of our type inferencgsasale assignment statements.
They are the only kind of statement that can define a variablé thus, change its type. In
the case of an assignment statement of the formop(a, b); , whereop is an element
of the setr of all possible binary operators, we have that the type isfredefined as the
set of possible output types of the operator being appligdg@ossible types af andb,
according to its own type rule:

typeRulg_opab) (Min €M) = {(s;t) € Min|s# v} UtypeRulgpyap) (Min)  (5.4)
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typeRulgyap) (Min €M) = { (vt)|t = outtypep({(at) € Min},{(b,t) € Min}) }
(5.5)
if cond
trueStmt;
el se
falseStmt;
end

Listing 5.2 Type inference and branching

In the case of f statements, the type inference process is handled ditferdrne “true”
and “false” branches of the statement are both treated apaamd statements, as if all
statements on either branch were one statement (see bs#ng he output type mappings
are determined separately for both branches and then mtrgeither into one mapping of
the possible types at the output of thfestatement itself:

typeRulg (Min € M) = merge(ty peRul@uestm(Min) , typeRul@aisestm{Min))  (5.6)

whi | e cond
loopStmt;
end

Listing 5.3 Type inference and loops

Handling of loop statements is slightly more complex. Beeaypes at the input of the
loop depend on types at the output, a fixed point must be ikelatcomputed. For the
purpose of our type inference analysis, all loop statenmemettreated ashi | e loops. Asis
the case forf statements, statements in the loop body are treated asrgie sompound
statement (see listing.3). The type inference rule fawmi | e loops can be expressed in the
form of pseucode, as in listing 4.
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1 function TypeMapping typeRuleWhile(Statement loopStmt, TypeMapp

inTypes)
2
3 # Create a type mapping for the types at the continue points of
4 # the loop. We initialize this mapping so all variable types a
5 # initially bottom (uninferred)
6 TypeMapping contTypes = {(s,t) | s in S, t = bottom};
7
8 # Create a type mapping for the types at the "break" or exit
9 # points of the loop
10  TypeMapping exitTypes;
11
12 # Repeat until a fixed point is reached for the output types
13 repeat until (contTypes is unchanged) AND (exitTypes is unchanged
14
15 # Compute the types at the input of the loop statement
16 loopInTypes = merge(inTypes, contTypes);
17
18 # Add new lists to the top of the break and continue list stacks
19 # These are global variables which will be filled in as the
20 # type inference analyzes the loop body statement.
21 breakStack.push(  new List());
22 continueStack.push( new List());
23
24 # Compute the types after the loop body by
25 # applying the type rule for the statement
26 bodyOutTypes = typeRule(loopStmt, loopinTypes);
27
28 # Pop the break and continue lists from their stacks
29 breakList = breakStack.pop();
30 continuelList = continueStack.pop();
31
32 # Compute the type mapping for all continue points.
33 # The types at the exit of the loop body are included
34 contTypes = bodyOutTypes;
35 for mapping in continueList
36 contTypes = merge(contTypes, mapping);
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end

exitTypes = inTypes;
for mapping in breakList

exitTypes = merge(exitTypes, mapping);
end

end

return exitTypes;
end

Listing 5.4 Type inference rule for while loop statements

The type inference process for loops is complicated by tbetfeat there could ber eak

or cont i nue statements in the loop. We handle this by maintaining glosil of the type
mappings associated with these statements for each @gierakhese are then be included
into the type mapping merging process of the fixed point cdatmn. Theconti nue
type mappings correspond to the back-edge (control flow)egigiag from the point after
the loop body to the loop entry. The eak type mappings must be taken into account to
properly compute the possible types at the loop exit.

5.2.4 Handling Recursion

Our current type inference analysis allows type infornratio flow across call sites, but
does not currently analyze recursive call chains. Its ctirbehavior is to terminate the
analysis when a call to a function which is currently beinglgped is encountered, at
which point it returns no type information about the recegsiall. This termination crite-

rion ensures that there will be no infinite recursion in theetanalysis itself.

We have found this solution to be acceptable for most of oncbmark programs, as most
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of the heavy computations are done inside of loops, and motgfn recursion. For other
dynamic languages, it may be desirable to propagate typennaition across recursive
call sites. This will, however, introduce additional comptions [FH8§ as it becomes
necessary to extract the non-recursive execution pathprandle type information about
those. This is because the type analysis of a recursiveifumdepends on the results of
that same analysis. Thus, the analysis must be able to gemerigut for a non-recursive
base case.

5.2.5 Inference Process

In terms of abstract interpretation, we wish to computeafgiven function, the least fixed
point of the mapping of program statements and variablestodf possible types before
that given program point. The type inference process fonatfan begins with the type sets
for the input parameters of the function being given. Becadiske MATLAB semantics,
the possible types of all other variables are initialized'to This is because undeclared
variables could be globals, and thus, could potentiallyl laoly type.

The body of the function is then analyzed. The function bddgli is a compound state-
ment. When inferring the types in a compound statements,t#tensents it contains are
traversed in order, and the output type of each statemetuarsdsin a global variable we
will call stmtTypeMapping . This is a map (e.g.: hash map) of the type mapping at the
output of each statement. Pseudocode is given for thistindis.5. When inferring types

for compound statements, we are careful to store the typ@imggpassociated withr eak
andcont i nue statements. These will be used when performing type inéeren loops.

1 function TypeMapping typeRuleCompound(Statement list L, TypeMapp ing
inTypes)

2

3

4 for each statement stmt in L

5

6
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add pair(stmt, inTypes) to global stmtTypeMapping;

inTypes = typeRule(stmt, inTypes);

i f stmt is of type breakStmt
add inTypes to breakStack.top()
end

i f stmt is of type continueStmt
add inTypes to continueStack.top()
end

end

return inTypes;
end

Listing 5.5 Type inference and compound statements

5.3 An Example

This section contains a step-by-step example to illustheg@vorkings of our type inference
analysis. Our example begins with the program shown imtysii6, which comprises two
functions:caller andcallee . Thecaller function branches on its input argument, and
calls thecallee function with two different arguments. Thellee function iteratively
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computes a sum based on a counter variable which is dividéadogt each iteration.

function r = caller(val)
if val > 5
r = callee(val);
el se
val2 = 2+ val;
r = callee(val2);
end
end

function v = callee(start)
v = 0
c = start;
while ¢ > 0.25
V=V + ¢
c=cl 2
end
end

Listing 5.6 Type inference analysis example: step 0

For the sake of the example, imagine that a user invokesatlee function with a 1x2
matrix of integers as its input argument (i.ealler([5 6]); is typed at the interactive
prompt). Our type inference analysis is then invoked on #iecfunction for this specific
argument type. It will then begin with the assumption tat has the 1x2 integer matrix
type, as illustrated in listing.7. The analysis will then traverse statements on both the
“true” and “false” branches of thef statement.
function r = caller(val <1x2 int>)
if val > 5
r = callee(val);
el se
val2 = 2 * val;
r = callee(val2);

end
end
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Listing 5.7 Type inference analysis example: step 1

On the “true” branch of thef statement, our analysis will conclude that th#ee func-
tion is called with a 1x2 integer matrix argument. Thus, thalgsis will recursively an-
alyze thecallee function for this argument type. The variablewill typed as a scalar
integer value directly, since it is assigned constant, aedsariablec will be assigned the
same type as theart variable (see listing.9).

function r = caller(val <1x2 int>)
if (val <I1x2 int>) > 5
r = callee(val <1x2 int>);
el se
val2 = 2 val,
r = callee(val2);
end
end

function v = callee(start <1x2 int>)
v <scalar int> = 0;
¢ <Ix2 int> = (start <1x2 int>);
while ¢ > 0.25

V=V + ¢
c=c/ 2
end
end

Listing 5.8 Type inference analysis example: step 2

Analyzing the body of thehi | e loop a first time, our analysis will conclude that inside
the loop,v becomes a 1x2 integer matrix, since that is the resulting dfghe addition of

a scalar integer with a 1x2 integer matrix. However, it widhclude that becomes a 1x2
matrix of real values, because dividing integer values bggers is not guaranteed to result
in integer values (see listirtg}9).

function v = callee(start <1x2 int>)
v <scalar int> = 0;
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3 c <Ix2 int> = (start <1x2 int>);

4 while (c <1x2 int>) > 0.25

5 v <1x2 int> = (v <scalar int) + (c <1x2 int>);

6 Cc <1x2 real> = (c <1x2 int>) / 2;

7 end

8 end

Listing 5.9 Type inference analysis example: step 3

The new types o andv at the end of the loop body will be merged with the types at the
loop entry. The analysis will conclude thais of type 1x2 real at the loop entry, while v
is of type integer with unknown size, because it was scateggr in the first iteration, and
will be 1x2 integer in the second, and thus its size cannotlaeamteed across all iterations.
However, inside the loop body, because adding an integannaditunknown size to a real
matrix of size 1x2 results in a matrix of real numbers withesithe type o/ will become
a real number matrix of unknown size. A third iteration whicsv that the types inside the
loop do not change at this point, and thus that a fixed pointieas reached (see listing
5.10.

1 function v = callee(start <1x2 int>)

2 v <scalar int> = 0;

3 C <1x2 int> = (start <1x2 int>);

4  while (c <1x2 real>) > 0.25

5 v <real> = (v <real>) + (c <1x2 real>);

6 c <1x2 real> = (c <1x2 real>) / 2;

7 end

8 end

Listing 5.10 Type inference analysis example: step 4

At this point, the analysis of theallee function is completed. The analysis will conclude
that for the 1x2 integer argument type, the return type oftinetion is real. This will be
reflected in thecaller ~ function, in which the value on the “true” branch will take the
real type (see listing.11).

1 function r = caller(val <1x2 int>)
2 if (val <1x2 int>) > 5
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r <real> = callee(val <1x2 int>);
el se
val2 = 2 * val;
r = callee(val2);
end
end

function v <real> = callee(start <1x2 int>)
v <scalar int> = 0;
C <1x2 int> = (start <1x2 int>);
whi l e (c <1x2 real>) > 0.25
v <real> = (v <real>) + (c <1x2 real>);
c <1x2 real> = (c <1x2 real>) / 2;
end
end

Listing 5.11 Type inference analysis example: step 5

Since the analysis of the “true” branch is completed, théyarsaof the “false” branch will
proceed. Trivially,val2 will be assigned the 1x2 integer type, since multiplying 2 1x
integer matrix by a scalar integer preserves its type. Sineeallee function is again
being called with the 1x2 integer type, the results of theetgpalysis on this function for
that type (which have been cached) will be reused. Thus,malysis will conclude that
also has the real type along the “false” branch (see ligiag).
function r = caller(val <1x2 int>)
if (val <1x2 int>) > 5
r <real> = callee(val <1x2 int>);
el se
val2 <1x2 int> = 2 * (val <1x2 int>);
r <real> = callee(val2 <1x2 int>);
end
end

Listing 5.12 Type inference analysis example: step 6
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5.4. Validation Strategy

Since ther variable has the same real type along both branches offtls¢atement, our
analysis will conclude that its type at the output of th@er function is also real (see
listing 5.13. At this point, the type inference analysis is completadtiecaller function
with a 1x2 integer argument. The results of the analysis ¢t biwecaller andcallee
function for their specific argument types will be cachedl&ber use.

function r <real> = caller(val <1x2 int>)

if (val <1x2 int>) > 5
r <real> = callee(val <1x2 int>);

el se
val2 <1x2 int> = 2 * (val <1x2 int>);
r <real> = callee(val2 <1x2 int>);
end
end

function v <real> = callee(start <1x2 int>)
v <scalar int> = 0;
Cc <1x2 int> = (start <1x2 int>);
whi l e (c <1x2 real>) > 0.25
v <real> = (v <real>) + (c <1x2 real>);
c <1x2 real> = (c <1x2 real>) / 2;
end
end

Listing 5.13 Type inference analysis example: step 7

5.4 Validation Strategy

Our JIT compiler relies on the type inference analysis to enagtimization decisions.
This often means eliminating run-time checks because tyfpemation has been statically
inferred. For example, if we know that a variable will alwadyes a floating-point matrix
at a certain point in the program, we no longer need to checkt Wpe it actually is
before operating on this variable at run-time. This posesiorportant design problem,
however. Should the type analysis produce incorrect regbet)IT compiler could produce
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erroneous code based on incorrect assumptions. This gotlan result in bugs that are
rather difficult to track.

To avoid such situations, we have devised a validationegjyatvhich essentially entails
running a series of benchmarks (see sec@idnfor a list) through the interpreter while
checking that the predicted types match the actual typeseay @oint (before and after
every 3-address form statement) in the execution of thelsmdhmarks. Should an error
occur, the program point where this happens is reportedigalath the erroneous type
information, and the actual types that occur at run-time.rélduce the overhead of this
validation process, the number of times a given statemelhtoeivalidated during the

execution of a function is limited to 128.

This validation strategy is by no means perfect, becauséoenchmarks do not expose
all the possible programs that could arise. Thus, it is fbss$hat some errors could slip
through. In practice, however, we have found this stratedyetquite effective at catching
bugs in our type analysis. We also believe that our benchenark fairly extensive as
they make use of every language feature our VM supports aniddiea fair level of code
complexity.

An alternative (or complementary) validation strategy lddwave been to use unit testing to
test our system. The difficulty with this, however, is thaéda the complexity of our type
inference system, there would be hundreds of cases to tesién to properly validate our
type analysis. These unit tests would also need to genevdesegments and validate the
results of the analysis over these. Our empirical approasimply using actual program
code to validate the analysis instead of code generatedriljetyc tests.
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Chapter 6

Performance Study

In this chapter, we evaluate the performance of our JIT ctanpis well as that of the
various optimization strategies it employs. We begin witteacription of our benchmark-
ing strategy, including the benchmark programs, the platfon which benchmarking was
performed, the versions of software used in performancesarements and the timing
strategy used. This is followed by a comparison of objectieeformance numbers for
our JIT compiler as well as competing implementations ssddathworks MATLAB and
GNU Octave.

The performance impact of our JIT compiler with various opztiations disabled is also
examined so as to assess their respective impact. We themrex¢he factors that can
explain performance differences between the various aoraigpns of our JIT as well as
competing implementations. We finally conclude with an exetion of the performance
of our type inference system and its impact on the globalperance of our JIT compiler.

6.1 Benchmarking Strategy

In order to assess the performance of our virtual machindyave chosen to compare the
actual performance of McVM (in terms of running-time of benmark programs) to that
obtained by competing solutions such as Mathworks MATLAB,G8Ictave (the GNU
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MATLAB environment) and McFor (a MATLAB to Fortran transtatbuilt by Jun Li, a
member of the McLab team). The Octave and MATLAB performamabers (shown in
section6.2 are intended to give us some idea of how well our current mwiyterforms
against competing implementations. The McFor (FORTRAN yodenbers are provided
as a kind of “lower bound”. FORTRAN compilers are known to pemni very well for
numerical computations, and thus, these numbers tell uswiwat kind of performance
levels we could potentially hope to reach with future VM implentations.

We have also measured our JIT compilation times in order tabésh whether they fall
within reasonable norms. In order to establish how sucakesit attempts at code opti-
mization have been, we have compared the performance of MaMNé running in in-
terpreted mode, as well as with the JIT compiler enabled vatidspecific JIT compiler
optimizations disabled. Furthermore, we show some prgfiimmbers intended to explain
where specific performance bottlenecks occur, as well as ityfierence profiling data to
help explain in which cases our type inference analysis tess and worse (see section
6.3).

We have performed our tests on a total of 20 benchmark pragrasmich are briefly de-
scribed in tablés. 1. Several of these are currently unsupported by the McForTHRIR
translator as it lacks support for cell arrays, closuresfandtion handles at this time. Ta-
ble 6.2 provides some characteristic numbers for the 20 benchnsaggsorted by McVM,
namely, the number of functions in each program, the totatber of statements (in 3-
address form), the maximum loop nesting depth in the entogram, and the total number
of call sites found.

All of our benchmarking metrics were gathered on a systenippgd with an Intel Core
2 Quad Q6600 processor (quad core, 2.4GHz) and 4GB of duaheh®DR2 RAM,
running Ubuntu 9.04 (linux kernel 2.6.28). We have gather@dMATLAB performance
numbers using MATLAB R2009a, and our GNU Octave numbers oav@ctersion 3.0.1.
The FORTRAN code produced by McFor was compiled using the GRBRFRAN com-
piler version 4.3.3. Because there is some variance whendibbenchmarks (on the order
of 10 to 20%), all benchmark timing measurements were madarnying the benchmark
programs a total of 30 times and averaging over all the values
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Table 6.1 Description and origin of our benchmark programs

Benchmark| Description Origin
adpt Adaptive quadrature by Simpson’s Rule  FALCON Project
beul Solves the heat equation using the backnton Dubrau (McLab
ward Euler method team)
capr Computes the transmission line capacthalmers University of
tance of a coaxial pair Technology
clos Computes the transitive closure of a diOTTER Project
rected graph
crni Crank-Nicholson heat equation solver FALCON Project
dich Dirichlet solution to Laplace’s equation FALCON Project
diff Young's two-slit diffraction experiment ~ MathWorks’  Cernltra
File Exchange
edit Computes the edit distance of two strings MathWorks’  Central
File Exchange
fdtd Finite Difference Time Domain (FDTD) Chalmers University of
technique Technology
fft Computes the discrete fourier transformdun Li (McLab team)
for complex data
fiff Finite difference solution to the WaveFALCON Project
equation
mbrt Generates the mandelbrot set Anton Dubrau (McLab
team)
nbld One-dimensional n-body simulation OTTER Project
nb3d Three-dimensional n-body simulation Modified nbld
nfrc Generates a newton fractal Anton Dubrau (McLab
team)
nnet Neural network learning AND, OR, XOR Anton Dubrau (McLab
functions team)
play Recursive minimax search Anton Dubrau (McLab
team)
schr Solves 2-D Schroedinger equation Anton Dubrau (McLab
team)
sdku Sudoku solver Andrew Casey (McLab
team)
svd Computes the singular value decomposinton Dubrau (McLab
tion of a large matrix team)
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Table 6.2 Characteristics of our benchmark programs
BenchmarkH Num. functions Num. statements Max. loop depth Num. cadksit

adpt 2 196 2 6
beul 10 511 1 38
capr 5 214 2 10
clos 2 58 2 3
crni 3 142 2 7
dich 2 144 3 7
diff 2 253 3 6
edit 2 130 2 6
fdtd 2 157 1 3
fft 2 159 3 8
fiff 2 120 2 4
mbrt 3 78 2 11
nbld 3 194 2 11
nb3d 3 164 2 12
nfrc 5 151 2 11
nnet 4 186 3 16
play 6 364 2 29
schr 8 203 1 32
sdku 9 363 2 49
svd 11 308 3 42

6.2 Objective Performance

Table6.3 shows a comparison of benchmark running times when runhmgigh McVM
with the JIT compiler enabled, Mathworks MATLAB, McVM with éhJIT compiler dis-
abled, GNU Octave, and McFor (compiled FORTRAN code), whalelé¢ 6.4 shows the
same running times normalized relative to that of the McVMW @lalues greater than one
representing running times slower than the McVM JIT). As \aa see, McVM with JIT
performs better than MATLAB in 6 out of 20 benchmarks, somes by a fair margin. In
the cases where it does worse than MATLAB, the running timeslt relatively close in
most cases, except for theni benchmark which performs rather poorly (we will examine
why in sectiong.3).
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Table 6.3 Comparison of benchmark running times across multiple environments

Benchmark|| McVM JIT MATLAB McVM no Octave McFor
(s) (s) JIT (s) (s) (s)
adpt 1.26 0.29 1.30 4.57 0.19
beul 0.35 0.31 0.18 0.78 N/A
capr 0.37 0.81 181.30 544.97 0.12
clos 0.70 0.08 1.43 1.71 0.72
crni 137.06 0.71 190.24 577.45 0.33
dich 0.30 0.47 122.15 411.43 0.17
diff 3.23 0.53 4.43 11.29 0.06
edit 8.26 1.62 11.62 52.21 0.02
fdtd 2.45 0.34 0.96 16.17 0.03
fft 1.36 1.65 287.00 958.79 0.67
fiff 0.73 0.72 163.75 485.58 0.13
mbrt 3.95 0.47 10.47 28.84 0.09
nbld 0.35 1.14 0.40 5.20 0.04
nb3d 0.32 0.11 0.17 2.23 0.05
nfrc 1.88 0.48 2.74 7.73 N/A
nnet 0.79 0.65 0.79 2.79 N/A
play 0.53 1.16 0.60 3.97 N/A
schr 1.24 0.87 0.89 0.97 N/A
sdku 0.63 1.87 3.17 21.01 N/A
svd 2.03 0.64 1.37 2.95 N/A

GNU Octave, possessing no JIT compiler, does rather paodgneral. It trails far behind
MATLAB and outperforms McVM with JIT on a single benchmarktérestingly, McVM
in interpreted mode, although it performs much worse thardth on several benchmarks,
actually performs better on some (this will also be discd$aeher). The McFor running
times are generally far ahead of MATLAB and McVM, except foetlos benchmark,
suggesting that MATLAB and McVM are still far from the “optati performance level.

In table 6.5 we show profiling numbers gathered using the McVM integretThese
numbers are counts of how many matrices were created, how mainix read operations
were performed, the number of matrix multiplication openag executed, the total count
of environment lookups, and the total number of functioriscakecuted. These give us
some idea about the behavior of our benchmark programsresiiegly, we can clearly
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Table 6.4 Benchmark running times relative to the McVM JIT performance
Benchmark| MATLAB McVMno JIT Octave McFor

adpt 0.23 1.04 3.64 0.15
beul 0.90 0.53 2.24 N/A
capr 2.19 487.55 1465.51 0.32
clos 0.12 2.04 2.45 1.03
crni 0.01 1.39 4.21 0.00
dich 1.59 413.73 1393.52 0.57
diff 0.16 1.37 3.49 0.02
edit 0.20 1.41 6.32 0.00
fdtd 0.14 0.39 6.60 0.01
fft 1.22 211.25 705.73  0.49
fiff 0.99 225.24 667.92 0.17
mbrt 0.12 2.65 7.30 0.02
nbld 3.30 1.17 15.06 0.10
nb3d 0.35 0.54 7.01 0.14
nfrc 0.26 1.45 411 N/A
nnet 0.83 1.00 3.53 N/A
play 2.18 1.13 7.44 N/A
schr 0.70 0.72 0.78 N/A
sdku 2.97 5.03 33.39 N/A
svd 0.32 0.68 1.45 N/A

see that the benchmarks with the highest number of matrreasad are the slowest to run
through the McVM and Octave interpreters. This is becauseating new matrices very
often is both expensive and cache unfriendly.

Table 6.6 shows relative profiling counts of the number of matricesatgd, the number
of slice reads, and the number of environment lookups wheldiffiis enabled. These are
actually ratios (percentages) of the values obtained @rpnéted mode. This table is meant
to show that the JIT compiler is able to reduce the occurrehed these expensive opera-
tions in almost all cases, and never increases their ogaerén particular, we see that the
fit benchmark has its number of matrix slice reads reduced @&.0rhis benchmark
also happens to run over 200 times faster with the JIT comerabled.

We examine the relative performance of McVM with specific ditimizations disabled
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Table 6.5 Interpreter profiling counts for our benchmark programs

Benchmark|| Matrices Matrix Matrix Env. Function
created slice reads mult ops lookups calls

adpt 103 K 9K 1 72 K 5K
beul 8K 23 2801 8K 9995
capr 26 M M 1 31 M 3K
clos 143 K 1 9 225 K 13
crni 29 M ™M 1 31 M 1K
dich 20 M 4 M 1 22 M 697 K
diff 791 K 1 1 791 K 154 K
edit 2M 375K 1 2M 75 K
fdtd 4 K 6007 1 2K 25

fft 43 M 9M 1 48 M 56

fiff 29 M 5M 1 28 M 6 K
mbrt 2M 1 1 2M 225 K
nbld 42 K 4 K 1 68 K 4 K
nb3d 3K 5248 367 3K 1117
nfrc 434 K 1K 1 219 K 46 K
nnet 119K 18 K 4 K 79 K 1K
play 91 K 6 K 6767 65 K 10K
schr 1133 96 41 732 129
sdku 335K 110K 1 454 K 27 K
svd 74 K 9K 4 K 62 K 5K

in table 6.7. Columns show the relative performance (running time) ofchemarks as
compared with the JIT compiler with all optimizations ereabl A number greater than
one signifies a slowdown. Clearly, binary operation and aa@yess optimizations have
a tremendous optimization potential as they speed up ddvenahmarks by two orders
of magnitude. Optimized library functions is able to spepdune benchmark by an order
of magnitude, and shows promise. We note, however, thaevindse three optimizations
do cause slowdowns in some cases, those are minor, and dikébcts (generating code
differently sometimes yields poorer cache performanaee).et

The direct call mechanism involves directly compiling salb program functions rather
than performing them through the JIT. This is beneficial todenarks that perform many
function calls (e.g..dich ), however, it can yield lower performance in cases where the
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Table 6.6 Relative JIT profiling counts for our benchmark programs
BenchmarkH Matrices created (%) Matrix slice reads (%) Env. lookups (%)

adpt 24.84 16.79 39.21
beul 85.47 47.83 114.19
capr 0.00 0.00 0.00
clos 0.00 100.00 0.00
crni 66.65 69.23 55.16
dich 0.00 0.00 0.00
diff 68.28 100.00 2.45
edit 64.99 39.98 81.56
fdtd 88.07 90.01 90.46
fft 0.00 0.00 0.00
fiff 0.01 0.00 0.00
mbrt 33.20 100.00 0.00
nbld 75.47 0.01 14.66
nb3d 93.06 97.71 74.43
nfrc 42.53 100.00 19.80
nnet 85.82 100.00 81.94
play 72.24 99.83 45.84
schr 65.14 54.17 83.61
sdku 18.21 13.96 11.32
svd 84.79 100.00 60.00

types of input parameters to a function are unknown. A versiothe function then gets
compiled with insufficient type information, whereas thesnpreter can extract exact type
information on the fly when a call is performed.

The last column of tablé.7 shows the relative performance of interpreted mode as com-
pared to the JIT compiler with all optimizations enabled. wes can see, the JIT speeds
up most benchmarks, sometimes by very large factors. Hawieadso causes some slow-
downs in some cases. These cases often correspond to bekshmare the JIT was not
able to efficiently optimize the code. In the casenb8d, for example, we can see in ta-
ble 6.6 that the number of matrix slice reads was reduced by less3¥ann such cases,
the JIT can actually add additional type conversion ovethisaconstantly requiring local
variables to be wrapped into objects for interpreter falka
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Table 6.7 Relative JIT performance with specific optimizations disabled

Benchmark|| No binary No array No direct No library No JIT
opts opts calls opts

adpt 1.47 1.17 1.00 1.07 1.04
beul 1.01 0.99 0.99 0.98 0.53
capr 572.70 416.09 1.74 1.04 487.55
clos 3.42 1.00 1.00 1.01 2.04
crni 1.69 1.31 0.78 1.00 1.39
dich 448.91 285.35 1.00 30.06 413.73
diff 2.14 1.02 1.02 1.01 1.37
edit 1.87 1.45 0.61 1.00 1.41
fdtd 0.95 1.06 0.99 1.01 0.39
fft 194.80 171.26 1.00 1.02 211.25
fiff 233.63 165.63 1.02 1.05 225.24
mbrt 3.51 0.98 1.01 1.00 2.65
nbld 1.06 1.28 1.02 1.01 1.17
nb3d 0.73 0.98 1.06 1.02 0.54
nfrc 1.24 0.98 1.68 1.00 1.45
nnet 1.17 0.99 1.03 1.00 1.00
play 1.15 0.99 1.07 1.00 1.13
schr 0.84 0.97 1.26 0.96 0.72
sdku 1.10 1.64 1.16 0.98 5.03
svd 0.79 0.92 1.06 0.95 0.68

We examine the total JIT compilation times for our benchmarktable6.8. This table
also shows the number of functions present in each benchrhark many specialized
function versions were compiled in total for these benclk®and how much time was
spent by the compiler performing analyses (e.g.: type a@nfee). As we would expect, in
most cases, there are no more specialized versions thammhigen of functions, because
the functions are always called with the same argument fygrebsthus no more than one
version is compiled for each function. In cases where thexermre, there are never more
than twice as many versions as functions. This gives sontkliligy to our approach, at
least when applied to environments such as MATLAB: there iexpdosion of the number

of specialized function versions in practice.

As we can see, most of the compilation time is spent perfagramalyses on the functions
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Table 6.8 Compilation times of our benchmark programs

Benchmark|| Num. Num. Compilation Analysis
functions  versions time (S) time (s)

adpt 2 2 0.89 0.82
beul 9 16 1.21 0.91
capr 5 5 0.50 0.43
clos 2 2 0.18 0.15
crni 3 3 0.33 0.27
dich 2 2 0.33 0.28
diff 2 2 1.26 1.18
edit 2 2 0.26 0.21
fdtd 2 2 0.47 0.36

fft 2 2 0.59 0.55
fiff 2 2 0.23 0.19
mbrt 3 3 0.16 0.12
nbld 3 3 0.47 0.38
nb3d 3 3 0.51 0.40
nfrc 5 5 0.24 0.16
nnet 4 4 0.36 0.29
play 6 10 0.58 0.42
schr 8 9 0.53 0.42
sdku 9 11 1.07 0.84
svd 11 15 0.78 0.59

to be compiled, as opposed to code generation. This sughasthis is an area where the
performance of our compiler could be improved. The comipitetimes we have obtained
are in some cases relatively long. Longer than the runnimggiof benchmarks themselves
in several instances. However, real scientific programsraarfor hours. Seeing how
our JIT compiler has yielded speedups of three orders of matgpover GNU Octave
and our interpreter in some cases, we believe that this datigpi overhead will be easily
amortized, as the JIT compiler could be saving hours of CPg timthe end.

We also note that little is known about the compilation siggtused by Mathworks MAT-
LAB, since the implementation is not open source. We do notknbat compilation strat-
egy is used or when MATLAB parses and compiles benchmarksthars, cannot measure
the MATLAB compilation times. For all we know, they may adlyebe comparable to
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those of McVM. Note that the compilation times obtained wiaeuded in the timing of
our benchmarks as the benchmarks were compiled during #teifiting iteration. Thus,
assuming MATLAB compiles functions as they are called dyiime first timing iteration
(or found to be callees of functions being compiled), as MtVM, we are comparing the
McVM and MATLAB running times on fair grounds.

6.3 Type Inference Efficiency

Table 6.9 Performance of the type inference system

Benchmark|| Top sets Unary sets Scalars known Size known JIT speedup
(%) (%) (%) (%) (%)

adpt 4.2 95.8 100.0 90.0 3.6
beul 55.2 44.8 71.3 29.6 -89.4
capr 0.0 100.0 100.0 82.8 99.8
clos 0.0 100.0 100.0 99.9 51.0
crni 19.1 71.4 68.7 54.8 28.0
dich 2.1 97.9 100.0 85.1 99.8
diff 14.3 82.1 66.7 66.7 27.0
edit 5.1 94.9 96.8 81.5 29.0
fdtd 0.1 99.9 100.0 49.8 -154.1
fft 0.0 100.0 100.0 80.5 99.5
fiff 0.0 100.0 100.0 86.1 99.6
mbrt 9.1 90.9 100.0 100.0 62.2
nbld 5.8 94.2 88.4 34.7 14.7
nb3d 3.4 96.6 100.0 18.1 -86.7
nfrc 16.4 82.7 100.0 98.9 31.2
nnet 52.2 47.8 98.7 55.5 0.3
play 23.3 66.4 77.4 52.0 11.5
schr 31.8 54.9 99.5 41.5 -39.2
sdku 14.8 85.2 83.8 49.4 80.1
svd 16.5 73.7 94.0 59.7 -47.7

In this section we examine the efficiency of our type infeeesitategy and its impact on the

performance of our JIT compiler. Tal#e9 shows profiling information relating to our type
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inference system. The first four columns are percentagessaheasured by sampling the
type sets of variables used by each statement at each exeotigvery program statement.
That s, the profiling was done so as to take the number of tanstatement is executed into
consideration. The last column is a measurement of the pige of speed improvement
the JIT compiler achieves over interpreted code (negat@g represent slowdowns).

The first column of the table tells us the percentage of typetbat areT (top, unknown
types). The second column is the percentage of type setainomg only one type (the
specific type of the variable is known). The third column shdte percentage of times
where variables holding scalar values were known aheadnaf to be scalar by the type
inference system. The fourth column is the percentage a@dimhere the size of matrix
variables was known by the type inference system.

The higher the proportion of type sets, the less type information our system knows. This
means less information on which to base optimizations, @meially poorer performance.
However, the knowledge of which variables are scalars is evere critical, as it lets the
JIT compiler know which variables can be stored on the stAskwve can see, this matches
our results: benchmarks with speedups of over 99% all haGe0W0 of scalar variables
known.

As discussed in sectiofi 2, thecrni  benchmark, while faster in the JIT compiler than in
our interpreter, performs much worse in McVM than MATLAB {g our JIT, it has the
highest running time of all our benchmarks). The reasonti is that it has relatively
poor type information. As can be seen in tablé, scalars are known in only 68.7% of
cases. This is because this benchmark uses matrix “creati@ssignment” to initialize

its input data (see section?). This results in several unknown types being propagated
through the entire program. We examine ways to fix this weskmé our type inference
system in sectioB.2.3

While our JIT compiler is able to speed up most benchmarksesoras by very significant
margins, some still show slowdowns over interpreted paréorce. These do not necessar-
ily have poor type information. Theb3d benchmark, for example, has 100.0% scalar
variables known and 96.6% unary type sets. Most of thesdypoptimized benchmarks
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make heavy use of matrix slice read operations (operatingntine columns or rows of a

matrix at a time) which we currently have no optimization o for. Hence, the JIT gen-

erates expensive interpreter fallback code requiring ntgos conversions, and performs
poorer than the interpreter itself. We discuss potentialsia eliminate this performance
issue in sectio.2.1
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Chapter 7

Language Design Issues

There are a number of factors that make the implementati@m afptimizing virtual ma-
chine for the MATLAB programming language a challengingktaSome of these issues
stem purely from the design of the language. These are erannrthis chapter, which is
largely a discussion of the “flaws” or oversights of the laage, as well as an argument as
to why dynamic language ought to be designed with more refgankrformance.

We first discuss the difficulties associated with the lackobfficial language specification
for MATLAB. We then proceed to describe some of the MATLAB laiage features which
make optimization more challenging as well as those whiateaassarily complicate the
understanding of the language and make the design of a comhjpinplementation more
difficult.

7.1 Defining the MATLAB Language

As noted by the authors of thehc PHP compiler BdVGO09, is it difficult to implement
a virtual machine or static compiler for a language whenehgmo official specification
for the said language. As is the case with PHP, Mathworksigeswno such specification
for the MATLAB language. The language behavior is purely rdi by the behavior of
the Mathworks MATLAB implementation (which can change watach release), and the
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limited amount of documentation they provide for this proidu

Unfortunately, this documentation does not go into thedelails of the language seman-
tics. Some key points are left out. Thus, in the implemeatatf McVM, much of our
work consisted of trying different program variants in MAAB, and comparing the be-
havior of the reference MATLAB implementation to that of MV This was necessary
since the reference MATLAB implementation really is theyoobmplete, publically avail-
able specification of the language. Still, to this point, vmamot guarantee that the subset
of the MATLAB language McVM supports is fully compliant withe reference MATLAB
implementation.

7.2 Optimization Barriers

Some language features make optimization of the MATLAB paiagning language more
challenging. Most of these challenges are perhaps unaseidia will probably always be
more difficult to optimize dynamically typed languages ttiagir statically typed counter-
parts, for example. However, some of these challenges stamdesign choices that seem
arbitrary, and perhaps unnecessary or easily avoidabeefoes, the way the language
is designed makes optimization particularly difficult vath really giving the programmer
any additional flexibility.

An instance of this which we have explained in some detaiéttion3.6is theeval con-
struct, which can read or write any variable in a functiortsge, potentially destroying
almost all useful optimization information. McVM solvedstby restrictingeval to oper-
ate only on global variables. A better solution, howevetryip@ato have arval construct
which can only operate on variables passed as input andsetur output directly instead
of being allowed to assign values to outside variables. dteinitely possible to design
a very flexible and usefudval construct without placing impractical constraints on the
programmer or an optimizing compiler.

Another problematic construct also discussed in secdi@ns the cd command, which
can change the current global bindings in unpredictableswdis problem truly stems
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from language design more than anything else. We believeitldvprobably be more
practical for MATLAB to have a “proper” module system as ivd&r Python instead of
basing lookups on the file system and relative paths. ccheommand does not really
grant programmers more flexibility, and is rather unintegitjone may not expect all global
bindings to change).

Theeval construct is not the only case where a function can accessnfisonment of
a caller. Some MATLAB library functions, such &wval need to look into the caller’s
scope to work as they do in MATLAB. In the case fefal , it can be used to call a
function based on its name. This is less problematic thandke okval , but complicates
the virtual machine design, and can also cause lost optilbizapportunities. We also
find that by allowing library functions to access variablaghaut them being passed as
arguments, MATLAB violates the idea that functions showtlas well encapsulated units
of functionality (the “black box” principle).

Another issue stems from the syntax of function calls andimatdexing. In MATLAB,
the expressiomo(a) could either be a call to the functidoo with argumenta, or an
indexing expression over the matifbo with indexa. Furthermore, function calls can be
made without parentheses. The statementb; could be an assignment bfto a, or an
assignment of the result of the function calbtavith no arguments ta.

This makes it difficult to determine what variables are fiortd and what expressions are
function calls, particularly when the variables are glbpdéfined. This can, in some cases,
result in lost optimization opportunities by making thedgmf variables more difficult to
determine ahead of time. It also complicates the semantitiseolanguage and makes
them less obvious to the programmer. A simple fix would be tpire parentheses for
all function calls, and use different tokens for array indgxsuch as square brackets (i.e.:
foola] ).

A last issue concerns the creation of matrices. As mentiamedction6.3, in MATLAB,
one can create a matrix by assigning at an index into a prelyiaundeclared matrix. For
example, if the variable is currently not bound to anything(s)= 1 will create a matrix
with the value 1 at position 5. This is problematic for an opting compiler because
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may actually be a global variable bound to an existing mainiwhich case we do not know
its type. We also find this to be problematic, because it caatdally result in unexpected
behaviors if one uses this method to attempt to declare axmalren a global binding
already exists.

7.3 Behavioral Inconsistencies

As previously stated, the MATLAB programming language haswed “organically” over

a number of years and does not have an official specificatiba.r@sult of this unplanned
expansion process is that in some areas, the language Haamnmintuitive, imprecise
or contradictory semantics. This generally complicatesitiplementation, because many
“special cases” have to be taken care of to ensure MATLAB atibjity, but can also
makes things more difficult for programmers by going agaimsir expectations.

A simple example of behavior inconsistency is the way MATLABndles comparisons
between complex numbers. In MATLAB, the<=, > and>= operators only operate on the
real part of a number, while the- and™= (inequality) comparison operators operate on the
whole number. The result is that, in MATLAB, the complex numgae + 2i and1 + 3i

are not equal, yet neither one is less than or larger thanttie.oThis is unintuitive and
can easily violate the expectations of programmers.

More significant is the issue of implicit type conversionsilaere is no true type hierarchy
in MATLAB. Programmers familiar with C++ or Java may expectithdding an 8-bit inte-
ger matrix and a double precision floating-point matrix vebyikeld a floating-point matrix
(the higher precision type), but instead, the MATLAB ressiléan 8-bit integer matrix (the
lower precision type). Hence, numerical precision is lgstlefault. Furthermore, one can-
not apply arithmetic operators between integer matricedssargle precision floating-point
matrices. This behavior contradicts that of most commomgammming languages and is
rather impractical.

MATLAB also contradicts itself in some ways. For example,MATLAB, when one
assigns outside of the bounds of a matrix, it will be autoosdif expanded to make the
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assignment possible. However, if a scalar matrix A is expdraly executing\(5)= 1;
for example, the result will be a row vector of length 5. Thissbomewhat contradictory
because in MATLAB, the first index is the row index, and masiege stored in column
major order. Thus, one would naturally expect the resuliEgior to be a column vector.

A strange feature of MATLAB is the presence of i@l expression. This expression is
meant to represent the end of an array’s bounds in an expreséihat is rather strange,
however, is that this expression is not only usable as anxjndean be used in sub-
expressions, and its value changes depending on its positibe syntax tree. For example,
if Ais a matrix of size 4x7, theA(1, floor(end/2)) gets us the element at position (1,
3), while A(end, 1) gets us the element at position (4, 1). This feature is ofsaduo
specify ranges going from a fixed value to the end of the aeay.:(A(2:end, 1) extracts

a portion of the first column of).

To add to the confusion, the expressisnd, end) is valid in MATLAB R2009a, but
A(end, round(end/2)) is not, for reasons that are not explained in the MATLAB docu-
mentation (we suspect it may be the result of a parser bugjtgpdbecause thend key-
word also indicates the termination of code blocks). Theén®ytprogramming language
deals with this issue in part by allowing ranges with unsjpetistart or end indices, which
automatically assume the value of the first or last arrayxridey.: A(5:end) iSA(5:) In
Python).

A more philosophical issue we have with the MATLAB semantgthat the behavior of

functions can change in function of the number of output argpts assigned by the caller.
Functions get the number of required output arguments agdehiparameter when called
and can alter their behavior based on it. This is again insterd with the behavior of most
programming languages and requires special handling in@aVvimachine’s implementa-
tion. However, we also question the value of this featureaf@jein many cases, it will not

help programmers write less code.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

These has been relatively little work done in the compilsesgch community as to the
optimization of scientific and dynamic programming langesgdro this day, most dynamic
languages are interpreted because of the inherent difficudfenerating efficient compiled
code for them. Mathworks has succeeded at creating a pdwkdtiand flexible dynamic

programming language for the scientific and engineeringnoanties. However, their

implementation of MATLAB is closed source and its internadrkings remain a trade
secret.

Through the McVM project, we have designed and implemente@@imizing virtual
machine comprising a JIT compiler for a non-trivial subsethe MATLAB language.
This virtual machine incorporates a powerful just-in-titgpe-based program specializa-
tion mechanism and additional optimizations which allowoitreach performance up to
three orders of magnitude faster than competing MATLAB iempéntations such as GNU
Octave.

One of our goals for the McVM virtual machine is to make it abkeaproduct for end-users
who seek a free and fast environment to develop software tweéHVIATLAB language.
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However, it is already of interest to the research commuMigivVM will soon be released
under the liberal BSD open source license, and made avataloither researchers. This
will make it possible for others to use it as a testbed for howenpiler optimizations and
language ideas.

We also hope that the success of our just-in-time programiaEation scheme will in-
spire other researchers and implementers to investigatest of such techniques in other
dynamic languages. Much of the ideas used to improve theqmeaince of our virtual ma-
chine, as well as the future research directions we suggessdation8.2 would be easily
applied to languages such as Python, Ruby or JavaScript,cane of these may well be
key to the implementation of dynamic languages whose padoce can compete with that
of statically compiled languages.

8.2 Future Work

In this section we look into possible improvements to McVMiethwould address some
of the more important performance issues with our curreptementation. This includes
matrix computation optimizations as well as improvemeatsur JIT such as the develop-
ment of a lower level intermediate representation and atemgpe inference system to
avoid performance degradation when sufficient type infélanacannot be inferred through
traditional means.

We also examine longer term performance improvement giesgtevhich could be applied
to McVM as well as virtual machines and JIT compilers for etdgnamic languages.
These strategies include the use of adaptive optimizaasnsell as the implementation
of a dynamic recompilation system. Finally, we discuss tleaiof designing an improved
dynamic language for scientific computation based on ouemspce with MATLAB.
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8.2.1 Matrix Computation Optimizations

Our virtual machine currently treats matrix operations weay generic way. When two
matrices are added or multiplied, for example, a new matrjed is allocated to store the
result. When a compound expression involving multiple noagiis evaluated, it is split
into 3-address form, and each intermediate result is storedseparated matrix that is
allocated on the fly. This approach works reasonably welkfangs, but it is obviously

not the most effective way to handle matrix operations.

In programs that make extensive use of matrix computatiois pften the case that ma-
trices are iteratively updated inside of loops. In this kiridcenario, our current approach
allocates new matrices for every loop iteration. In suctesag would likely be benefi-
cial to reuse the same memory space for a given matrix varialslwell as for temporary
results. This could be achieved through an analysis thasmagtdrix variables to pre-
allocated “matrix registers”, thereby reducing allocataverhead and improving memory
locality.

Another possibility for optimization would be to map sometrixaoperations directly to
BLAS/LAPACK library calls. We currently do not use the full muitial of these libraries.
They expose some of the more common compound matrix opesatibich we currently
implement using one or more intermediate steps. They ald@ maossible to operate
directly on a single row or column of a matrix without first edting the values from the
said matrix. This could provide significant speed gains magituations.

8.2.2 Secondary Intermediate Representation

At this point, the JIT compiler generates LLVM code basee@ctiy on our IIR tree form
and the results of data flow analyses. It then relies on LLVMyéoform the last opti-
mization steps. However, LLVM lacks high-level informatioecessary to perform some
optimizations. For example, it cannot know that some emvirent writes and reads (asso-
ciated with interpreter fallback) are redundant or unnsass It is also unaware that some
type conversions required by the JIT compiler could be @latad.
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It is likely that the code we generate could be optimizedhertif instead of generating
LLVM code directly, we instead generated code in anoth@rimediate form that exposes
more higher-level information. This intermediate form kbthen be optimized to elimi-

nate some redundant operations, possibly using very sitpplephole” pattern matching
techniques. Dataflow analyses would also be more effectigehgégher level. The opti-

mized intermediate form would then be translated to LLVMe&aua separate pass.

8.2.3 Smarter Type Inference

Knowledge of specific data types is important to optimizatidJnfortunately, the need
to be conservative in our type inference analysis meansuttiatown types dominate in
merges. The result is that once “unknown” types are intreduthey often propagate and
undermine the type inference efforts. Our code generatiategy is then left with very

little information to operate on. In many cases, howeveenei the type of a variable

cannot be determined with 100% certainty, it may be posdblaitigate the impact of

unknown types by predicting the most likely outcome.

A speculative design enables heuristic judgements. Ik&yj for example, that if a vari-
able is constantly added with integer matrices, it is alstnggger matrix. Our code gen-
eration system could use these “best guesses” to generatptianized code path. The
types of variables can then be tested during execution amdphmized path chosen if
appropriate. If the predicted type turns out to be wrong wihencode executes, a default
unoptimized path can be executed instead. We believe tloht &u approach would be
likely to yield important speed gains, because the addecheael can be very small and
the potential gains very significant.

8.2.4 Adaptive Optimizations

In our JIT compiler, optimizations are currently always kgxpin every case where they
are applicable. This, however, is not always optimal, beeaaome optimizations can,
in some cases, reduce actual performance. Thus, it is pedegirable to implement a
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system to try and predict which optimizations will yield fmmance gains. This could
potentially be done by building a predictive model based @filpng information or code
features. At run-time, we could let functions run for sonmediin interpreted mode before
JIT compiling them, so as to gather profiling information,iethwould then be used to
query the predictive model in order to make optimizationisieas.

This idea is not novel. Most commercial optimizing JIT colaps analyze code and per-
formance to make optimization decisions4F "05]. Our approach is essentially a com-
bination of two existing ideas. Cavazos and O'Boyle have @evis system where code
features are used to predict which optimizations will bereefiven method@CO04. The
features they use, such as counts of specific type of Javedadgenstructions, are meant to
give the predictive model a “portrait” of what kind of opeaats a given method performs.
Their approach uses a predictive model based on logistressmn (trained offline), and
they have shown speedups of up to 33% on some Java benchmarks.

A similar approach proposed by Cavazos et. al uses hardwegmpance counters (e.g.:
number of cache misses, floating-point operation stasiséitc.) to build a model of what
optimizations are warranted by specific behaviors of a mmprogram CFA"07]. Their
approach showed up to a 17% gain over the highest optimizagtting of a commercial
optimizing compiler. We believe that by combining this aggoch with profiling based
on method features, it may be possible to achieve greatésrpeance gains than can be
achieved with either technique separately. Profiling dateals important information
about a program’s actual behavior, while code features eamsbd to fine tune optimiza-
tions for each method of a program.

8.2.5 Dynamic Recompilation

We have mentioned in sectidh6 that we had placed restrictions on the power of some
dynamic MATLAB features, notably the/al andcd constructs. These restrictions are due
to the fact that our system only compiles functions once aakla® optimization decisions
at compilation time. Thus, our system must ensure that apdition decisions cannot be
invalidated by dynamic features of the language.
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One way to get around this limitation would be to make use oftack replacement (see
section2.6) to dynamically recompile and replace functions once softleebassumptions
made at compilation time become invalidated. This way, dyindanguage constructs such
aseval andcd can be left unrestricted and aggressive optimizationstdirbes performed.
The obvious tradeoff, however, is that dynamic recompmfatvill incur some overhead.

8.2.6 Language Design

As examined in chaptét, there are a number of issues that make it difficult to optntlie
MATLAB language, and make it sometimes unintuitive for praxgmers. The MATLAB
programming language also has no publically availableipaton document, making it
difficult to write compatible implementations. These perhk could potentially be fixed
by Mathworks, but changing the syntax and semantics of atiegilanguage with such a
large following is impractical and unlikely to happen.

It would perhaps be desirable to implement a new dynamicuageg that shares the ad-
vantages of MATLAB in terms of productivity gains and coniarce, but is designed with
performance, consistency and intuitiveness in mind. Neuufes such as improved reflec-
tivity and metaprogramming capabilities could also beadtrced. 1t may be advantageous
if such a project came from the academic world, as it wouldemaore likely for the ref-
erence language implementation to be open source, ancefertihnbe a publically available
specification.

Designing a new programming language is obviously chaitenglt is easy to design a
language to be easy to optimize by introducing additionakt@ints, but there is a certain
balance to be achieved between ease of optimization ane@mmce for the programmer.
Dynamic languages are usually designed with programmaetugtwvity as their primary
goal and very little regard for performance. As discussedhapter7, some language
design features of MATLAB complicate optimization whileihg rather arbitrary choices.
We believe it should be possible to design a programmingiageg that is easier to optimize
without compromising its flexibility.
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