
Tachyon's GC

Maxime Chevalier-Boisvert

Jan. 11, 2012

Tachyon needs a GC

● JS without GC is only a toy implementation
● Previously, allocator bumps pointer to allocate

○ If we run out of heap space, failure happens
○ Allocate big heap, hope we have enough heap space
○ Long-running benchmarks not possible

● To bootstrap, Tachyon needed ~50GB of allocations
● Tachyon should be able to bootstrap on a "normal" desktop

○ ~4GBs RAM
● Basic GC needs

○ Collect dead objects when the heap is full
○ Speed is not extremely critical

KISS: simplifying our work

● Stop-the-world, semi-space, compacting GC
○ Cheney's algorithm

● Fixed-size, contiguous heap
○ Pre-allocate one big block of memory with malloc

● The C world cannot hold references to Tachyon objects
○ By design, this should never be needed

● Some objects are not currently collected
○ Context lives outside GC'd heap
○ No special handling of string table (weak references)
○ Machine code is not collected

● Are these issues?
○ Not difficult to improve
○ Not a problem for our current applications

Tachyon compiles its own GC

● Runtime code already written in extended JS
● Already have bulk of code to allocate/touch Tachyon objects

○ Auto-generated based on object layout info
● Could have written the GC in C

○ Trying to avoid this by design
○ Don't want redundant code in C

● GC in extended JS ties well into current design
○ GC can use getters/settters to access memory object
○ Can auto-generate layout visit functions for GC

● Result: fairly simple implementation
○ runtime/gc.js -> 961 lines
○ gc code generation code -> ~200 lines
○ Implementation + debugging time: ~2 weeks

Debugging
● Mark's wise words of warning: GCs are notoriously bug-

prone and difficult to debug
○ Mean bugs that will make you cry yourself to sleep

● Testing strategy
○ Write representative unit tests

■ Graph updating, mini VM, corner cases
○ Make sure to use standard library
○ Make sure to use all weird calling conventions
○ Shrink heap, force many collections (30+)

● Debugging tools
○ Many many assertions, self-checking

■ e.g.: can't allocate in heap during GC
○ iir.trace_print("string"), printInt(intVal)
○ GCC's mprobe

Implementation details

● Allocations go through heapAlloc(size)
○ Checks if space is available, if not, calls gcCollect()

● GC traverses roots, copies references objects
○ Context object -> gc_visit_ctx(), auto-generated
○ Dynamic stack traversal code, top-to-bottom

● References come in 3 kinds:
○ boxed values (tag bits + payload)
○ reference values (heap object pointer, no tag bits)
○ raw pointers (pointer to data outside of heap)

● Meta-info encoded in machine code blocks
○ Stack frame format after return address
○ Location of references, pointers inside MCB at end

Stack traversal (1/2)
● Has multiple potential applications

○ GC
○ Exceptions
○ Debugger, stack-frame introspection
○ On-stack replacement

● Need to know
○ Location and type of references in a stack frame
○ Offset to the next stack frame down
○ Know return address, base pointer of topmost frame

■ iir.get_ra(), iir.get_bp()
● For now, simple approach

○ call fptr, jmp POST_INFO, <... info bits ...>,
POST_INFO:

○ Attempt to benefit from hardware ret branch prediction
○ Ultimately : external table hashing on ra probably best

■ Less instruction cache interference

Stack traversal (2/2)
● Backend knows call conv., encodes stack frame info

○ Info written after call instruction
○ Info is about the caller function's frame

● Stack frame info:
○ Magic number: 1337 (16-bit)
○ Call align/pad space (16-bit)

■ May be used to align callee stack frame
○ Num stack slots (16-bit)
○ Return address slot index (16-bit)
○ * [kind: other:0, rptr:1, ref:2, box:3 (2 bits)]
○ Function name (ASCII string, for debugging)

● But JS is more complicated than your ex:
○ call_apply -> pushes caller sp under args
○ arguments -> special call to createArgTable

Performance
● Performance not critical, but still interesting
● To collect a basic heap:

○ All primitive functions
○ All stdlib objects
○ All strings
○ Simple test program

● Collection time ~5ms
● Time includes

○ All assertions
○ Some amount of console output

● Performance fairly good, acceptable for our purposes
● Surprisingly unslow?

○ GC coded with typed pointers, integers
○ JavaScript only in syntax

