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Higgs

● Tracing JIT for JavaScript
● Written in D + JS
● Second iteration of Tachyon compiler
● Simpler, more straightforward design
● More dynamic optimization strategy

● 3 main components:
● Interpreter
● Type monitoring system
● Tracing JIT

● Current status:
● ES5 interpreter complete, GC complete
● Type monitoring implementation started
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Previous Work: Tachyon

● Method-based JS compiler
● Compiles JS down to x86/x86-64
● Compiler itself written in (extended) JS

● Even the assembler

● Self-hosting: Tachyon can compile itself
● Goal: static analysis + dynamic reoptimization

● Similar to Brian Hackett's type inference work
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Previous Work: Type Analysis

● Goal: more accuracy, reasonable cost for server-side JIT or 
offline compilation

● Path-sensitive type analysis of JS

● Recency types (Altucher & Landi, POPL 95)

● Decoupled fixed-point algorithm

● Results:
● Accuracy close to state of the art
● Some cases very hard to analyze without context
● Cost still fairly high, even for offline compilers

● My conclusion:
● A simpler and more dynamic strategy is needed
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Higgs: Goals and Non-Goals

● Goal: 
● Demonstrate soundness and effectiveness of novel compiler 

architecture and dynamic language optimizations

● Non-goals: 
● Supporting every JS program
● Competing on parsing/compilation speed
● Beating V8/FF on every benchmark

● Simplifying assumptions
● For now, Higgs targets x86-64 only
● Targets programs with medium-long running-times

– e.g.: games, server-side environments
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Why a tracing JIT?

● Have tracing JITs gone out of fashion?
● V8, IonMonkey are method-based
● Are method-based JITs better?

● Important advantages:
● Simple design
● Incremental construction
● Inlining comes “for free”
● Code invalidation (architectural elegance?)
● Bonus: fast compilation
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The Higgs Interpreter

● Reference implementation and JIT fallback
● Fast prototyping: simplicity, extensibility 

prioritized over speed
● Implements register-based VM + GC
● Interprets a low-level IR
● JS primitives implemented in extended JS
● GC is semi-space, stop-the-world, copying
● Runtime, stdlib, GC ported over from Tachyon
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Why a low-level IR?
● Simplifies the interpreter

● Deals with simple, low-level ops
– e.g.: imul, fmul, load, store, call, ret

● Knows little about JS semantics

● Simplifies the JIT
● Less duplicated functionality in interpreter and JIT
● Avoids implicit dynamic dispatch in IR ops

– e.g.: the + operator in JS has lots of implicit branches!

● JS primitives of runtime are JS functions
● Tracing through high-level opcodes is problematic
● Similar idea to Tamarin-Tracing design (Forth opcodes)
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Double-Word Tagging

● Higgs uses double-word tagging of values
● No tag bits, no NaN tagging
● One value word (64-bit) + one type tag byte

● Downside: size, two stack pointers, two arrays
● Upsides:

● Values accessible directly, no unboxing
● Modern CPUs have multiple execution units
● In many cases, can completely ignore type info
● JIT performance favored over interpreter 

performance
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Redefinable Runtime Library

● Runtime functions are redefinable at run-time
● Allows for things like operator overloading
● Allows for things like load('runtime.js')
● Side effect of simpler design

● Runtime functions are like any other JS function

● We can optimize away the cost
● Inlined like any other function
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Profiling

● Unlike a static compiler, an interpreter or VM 
can observe a program's execution

● Can gather useful info for optimization
● Programs tend to have repetitive behaviors

● Profiling incurs cost: cost/accuracy tradeoff
● In practice, modern VMs do statistical profiling

● e.g.: using inline caches to gather type profile
● e.g.: approximate call graph construction



 14

Monitoring

● Opinion: modern VMs still don't make effective use of 
opportunities afforded by profiling

● An interpreter can fully observe a program's execution
● Any property of an executing program can be observed
● Massive amounts of data are available

● Thought experiment: if you were to pause a program's 
execution, you could gather the current types of all 
variables and object fields

● Monitoring is non-statistical profiling
● Type monitoring: gather a fully accurate type profile.
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Monitoring in Higgs

● Interpreter monitors the types of all object fields 
by recording all types written using special 
monitoring instructions

● Tracing JIT uses type profile to compile 
optimized traces relying on type observations

● If type optimizations become invalidated, whole 
traces can be invalidated
● Easy: nullify trace pointer, exit trace if needed
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Gambling with Types

● The system should be designed so that most 
type optimizations will not be invalidated
● Can maximize the chance of this by making smarter 

optimization choices (heuristically)
● Can avoid repeatedly making the same mistakes

● Brian Hackett showed some amount of 
invalidation/recompilation is not catastrophic
● Recompilation probability tends to tail off with time



 17

Overview of the Higgs Model

● Program execution begins
● Interpreter builds type profile through monitoring
● Interpreter records “hot” traces
● Traces passed to optimizer

● Makes observations based on type profile
● Simplifies/optimizes recorded traces

● Machine code generation
● Interpreter branches to compiled trace code
● Monitoring continues, potentially invalidating traces
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function init()
{
    // Initialization of an array with integer values
    arr = new Array(1000);
    for (var i = 0; i < arr.length; ++i)
        arr[i] = i;
    return arr;
}

// Code operating on the array. This is the part
// of the program we will specifically try to optimize.
//
// Optimizing more complex examples such as matrix
// multiplication and FFT involves similar challenges.
function compute(arr)
{
    sum = 0;
    for (var i = 0; i < arr.length; ++i)
        sum += arr[i];

    return sum;
}
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COMPUTE:
sum = 0;
i = 0;

LOOP_TEST:
n = getProp(arr, 'length'); // l = a.length
t = ge(i, n);
if t goto LOOP_END          // while (i < a.length)

LOOP_BODY:
v = getProp(arr, i);
sum = add(sum, v);          // sum += arr[i]
i = add(i, 1)               // i += 1
goto LOOP_TEST

LOOP_END:
return sum

IR of the compute Function
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Recording Traces

COMPUTE:
sum = 0;
i = 0;

LOOP_TEST:                      // Trace recording begins here
n = getProp(arr, 'length');   
t = ge(i, n);
if t goto LOOP_END         

LOOP_BODY:
v = getProp(arr, i);
sum = add(sum, v);          
i = add(i, 1)               
goto LOOP_TEST                  // This backwards branch can 
                                // trigger trace recording if    
LOOP_END:                       // executed often enough
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Primitive Calls

COMPUTE:
sum = 0;
i = 0;

LOOP_TEST:                     
n = getProp(arr, 'length');   // Primitive calls will be
t = ge(i, n);                 // inlined into the trace
if t goto LOOP_END         

LOOP_BODY:
v = getProp(arr, i);
sum = add(sum, v);          
i = add(i, 1)               
goto LOOP_TEST                  
                                
LOOP_END:
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//LOOP_TEST:

    //n = getProp(a, 'length');
    if !is_array (a)            => exit trace
    n = get_array_len(a)

    //t = ge(i, n);
    if !is_int(i)               => exit trace
    if !is_int(n)               => exit trace
    t = ge_int32(i, n)

    if t goto LOOP_END         

//LOOP_BODY:

    //v = getProp(a, i);
    if !is_array (a)            => exit trace
    if !is_int(i)               => exit trace
    v = get_array_elem(a, i)

    //sum = add(sum, v);          
    if !is_int(sum)             => exit trace
    if !is_int(v)               => exit trace
    sum = add_int32(sum, v)

if int_overflow             => exit trace

    //i = add(i, 1)               
    if !is_int(i)               => exit trace
    i = add_int32(i, 1)

if int_overflow             => exit trace

    goto LOOP_TEST             // Return to the trace head
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//LOOP_TEST:

    //n = getProp(a, 'length');
    if !is_array (a)            => exit trace
    n = get_array_len(a)

    //t = ge(i, n);
    if !is_int(i)               => exit trace
    if !is_int(n)               => exit trace
    t = ge_int32(i, n)

    if t goto LOOP_END         

//LOOP_BODY:

    //v = getProp(a, i);
    if !is_array (a)            => exit trace
    if !is_int(i)               => exit trace
    v = get_array_elem(a, i)

    //sum = add(sum, v);          
    if !is_int(sum)             => exit trace
    if !is_int(v)               => exit trace
    sum = add_int32(sum, v)

if int_overflow             => exit trace

    //i = add(i, 1)               
    if !is_int(i)               => exit trace
    i = add_int32(i, 1)

if int_overflow             => exit trace

    goto LOOP_TEST             // Return to the trace head
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Trace Optimization

● Through monitoring, we can observe that
● arr is an array of integers at the entry to compute
● The length of arr is 1000
● Integers in arr reside in range [0, 999]

● From JS semantics, we have that:
● i, sum are integer values at initialization
● The result of int+int is int
● Array lengths are always Uint32

● By type propagation, we can infer that:
● i, sum will remain Uint32 throughout their lifetime
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//LOOP_TEST:

    //l = getProp(a, 'length');
    //if !is_array (a) => exit      We know a is an array on trace entry
    n = get_array_len(a)

    //t = ge(i, n);
    //if !is_int(i) => exit         We know i is integer on trace entry
    //if !is_int(n) => exit         Array lengths are always UInt32
    t = ge_uint32(i, n)

    if t goto LOOP_END         

//LOOP_BODY:

    //v = getProp(a, i);
    //if !is_array (a) => exit      As before
    //if !is_int(i) => exit         As before
    v = get_array_elem(a, i)

    //sum = add(sum, v);          
    //if !is_int(sum) => exit       Type known before trace
    //if !is_int(v) => exit         from monitoring, know v to be int
    sum = add_int32(sum, v)         // Type of v does not change here

if int_overflow => exit trace

    //i = add(i, 1)               
    //if !is_int(i) => exit         As before
    i = add_int32(i, 1)             // Type of i does not change here

if int_overflow => exit         Because i < 0xFFFFFFFF

    goto LOOP_TEST                  // Return to the trace head
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Invalidation

● When traces make type observations, there is a 
danger: the type profile could change

● In our example, should someone store a string 
in arr, the type of array elements would change
● e.g.: arr[0] = “foo”
● arr now contains both strings and integers

● If this happens, optimized code should be 
invalidated (easy in a tracing JIT)

● Code only reoptimized if called again
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The Cost of Monitoring

● There's a problem with monitoring
● Need to maintain a fully-accurate type profile
● Must account for all property writes

● Invalid optimizations will cause bugs

● Recording every property write would be slow
● Must save time, but still account for everything
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p = { x:1.5, y:1.5 } // 2D point
v = { x:0.2, y:0.3 } // Velocity vector

// Move our point in function of time
for (;;)
{
    dT = deltaTime()
    p.x = p.x + v.x * dT // Don't want to check
    p.y = p.y + v.y * dT // both of these writes!
}
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p = { x:1.5, y:1.5 } // x, y: float
v = { x:0.2, y:0.3 } // x, y: float

// Move our point in function of time
for (;;)
{
    dT = deltaTime()     // dT: float
    p.x = p.x + v.x * dT // x = float + float * float
    p.y = p.y + v.y * dT // y = float + float * float
}
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Monitoring Cleverly

● Don't have to record every property write
● Once we make an observation about a type, only 

care to know that this observation remains valid
● Only need to monitor writes that may violate past 

observations
● Observations provide information we can use to 

optimize (and remove) monitoring code

● Building a walled garden: type observations are 
used justify the validity of other observations
● Minimal set of checks to guarantee safety
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Type Inference

● How is the design of Higgs different from Mozilla's type 
inference?
● Higgs does not do global type analysis
● No fixed-point, no complex TI algorithm

● Higgs does linear type propagation along traces
● Like constant propagation, simple algorithm

● Access to potentially more accurate information than 
global type analysis can provide
● Type analyses are forced to be conservative
● Imprecisions slip into the model
● May overgeneralize type sets
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Continuous Optimization

● Programs may perform different tasks at 
different times

● Long-running programs may be worth re-
optimizing

● e.g.: GIMP-like image editor, operates on 
different image formats
● Want to re-optimize image-processing kernels

● Could rebuild type profiles, partially or entirely
● e.g.: scan the heap, like garbage collection
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Conclusion

● Higgs will use monitoring to extract accurate 
type information from programs

● Goal: optimize programs to a greater extent 
than otherwise achievable

● Cost of accurate type profiling can be offset 
(optimized away) by the JIT

● Higgs makes interesting technical choices 
along the way, explores the space of JIT design 
possibilities
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Visiting Mozilla

● Visiting Mountain View office until Feb 15th 
● Here to learn about Mozilla JIT technology

● Optimizations done (both high and-low-level)
● Specifics of your tracing JIT, how to do this well
● Catching details I might be overlooking

● If you'd like to discuss compilers, programming 
languages or microcontrollers let's talk
● e.g.: /((food|beer) talk)+/
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github.com/maximecb/Higgs

maximechevalierb@gmail.com

maximecb on #ionmonkey

pointersgonewild.wordpress.com

Love2Code on twitter
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