
Higgs

A monitoring JIT for JavaScript

Maxime Chevalier-Boisvert

Dynamic Language Team

Université de Montréal

 2

Higgs

● Tracing JIT for JavaScript
● Written in D + JS
● Second iteration of Tachyon compiler
● Simpler, more straightforward design
● More dynamic optimization strategy

● 3 main components:
● Interpreter
● Type monitoring system
● Tracing JIT

● Current status:
● ES5 interpreter complete, GC complete
● Type monitoring implementation started

 3

Previous Work: Tachyon

● Method-based JS compiler
● Compiles JS down to x86/x86-64
● Compiler itself written in (extended) JS

● Even the assembler

● Self-hosting: Tachyon can compile itself
● Goal: static analysis + dynamic reoptimization

● Similar to Brian Hackett's type inference work

 4

Previous Work: Type Analysis

● Goal: more accuracy, reasonable cost for server-side JIT or
offline compilation

● Path-sensitive type analysis of JS

● Recency types (Altucher & Landi, POPL 95)

● Decoupled fixed-point algorithm

● Results:
● Accuracy close to state of the art
● Some cases very hard to analyze without context
● Cost still fairly high, even for offline compilers

● My conclusion:
● A simpler and more dynamic strategy is needed

 5

Higgs: Goals and Non-Goals

● Goal:
● Demonstrate soundness and effectiveness of novel compiler

architecture and dynamic language optimizations

● Non-goals:
● Supporting every JS program
● Competing on parsing/compilation speed
● Beating V8/FF on every benchmark

● Simplifying assumptions
● For now, Higgs targets x86-64 only
● Targets programs with medium-long running-times

– e.g.: games, server-side environments

 6

Why a tracing JIT?

● Have tracing JITs gone out of fashion?
● V8, IonMonkey are method-based
● Are method-based JITs better?

● Important advantages:
● Simple design
● Incremental construction
● Inlining comes “for free”
● Code invalidation (architectural elegance?)
● Bonus: fast compilation

 7

The Higgs Interpreter

● Reference implementation and JIT fallback
● Fast prototyping: simplicity, extensibility

prioritized over speed
● Implements register-based VM + GC
● Interprets a low-level IR
● JS primitives implemented in extended JS
● GC is semi-space, stop-the-world, copying
● Runtime, stdlib, GC ported over from Tachyon

 8

Why a low-level IR?
● Simplifies the interpreter

● Deals with simple, low-level ops
– e.g.: imul, fmul, load, store, call, ret

● Knows little about JS semantics

● Simplifies the JIT
● Less duplicated functionality in interpreter and JIT
● Avoids implicit dynamic dispatch in IR ops

– e.g.: the + operator in JS has lots of implicit branches!

● JS primitives of runtime are JS functions
● Tracing through high-level opcodes is problematic
● Similar idea to Tamarin-Tracing design (Forth opcodes)

 9

Double-Word Tagging

● Higgs uses double-word tagging of values
● No tag bits, no NaN tagging
● One value word (64-bit) + one type tag byte

● Downside: size, two stack pointers, two arrays
● Upsides:

● Values accessible directly, no unboxing
● Modern CPUs have multiple execution units
● In many cases, can completely ignore type info
● JIT performance favored over interpreter

performance

 10

 11

 12

Redefinable Runtime Library

● Runtime functions are redefinable at run-time
● Allows for things like operator overloading
● Allows for things like load('runtime.js')
● Side effect of simpler design

● Runtime functions are like any other JS function

● We can optimize away the cost
● Inlined like any other function

 13

Profiling

● Unlike a static compiler, an interpreter or VM
can observe a program's execution

● Can gather useful info for optimization
● Programs tend to have repetitive behaviors

● Profiling incurs cost: cost/accuracy tradeoff
● In practice, modern VMs do statistical profiling

● e.g.: using inline caches to gather type profile
● e.g.: approximate call graph construction

 14

Monitoring

● Opinion: modern VMs still don't make effective use of
opportunities afforded by profiling

● An interpreter can fully observe a program's execution
● Any property of an executing program can be observed
● Massive amounts of data are available

● Thought experiment: if you were to pause a program's
execution, you could gather the current types of all
variables and object fields

● Monitoring is non-statistical profiling
● Type monitoring: gather a fully accurate type profile.

 15

Monitoring in Higgs

● Interpreter monitors the types of all object fields
by recording all types written using special
monitoring instructions

● Tracing JIT uses type profile to compile
optimized traces relying on type observations

● If type optimizations become invalidated, whole
traces can be invalidated
● Easy: nullify trace pointer, exit trace if needed

 16

Gambling with Types

● The system should be designed so that most
type optimizations will not be invalidated
● Can maximize the chance of this by making smarter

optimization choices (heuristically)
● Can avoid repeatedly making the same mistakes

● Brian Hackett showed some amount of
invalidation/recompilation is not catastrophic
● Recompilation probability tends to tail off with time

 17

Overview of the Higgs Model

● Program execution begins
● Interpreter builds type profile through monitoring
● Interpreter records “hot” traces
● Traces passed to optimizer

● Makes observations based on type profile
● Simplifies/optimizes recorded traces

● Machine code generation
● Interpreter branches to compiled trace code
● Monitoring continues, potentially invalidating traces

 18

function init()
{
 // Initialization of an array with integer values
 arr = new Array(1000);
 for (var i = 0; i < arr.length; ++i)
 arr[i] = i;
 return arr;
}

// Code operating on the array. This is the part
// of the program we will specifically try to optimize.
//
// Optimizing more complex examples such as matrix
// multiplication and FFT involves similar challenges.
function compute(arr)
{
 sum = 0;
 for (var i = 0; i < arr.length; ++i)
 sum += arr[i];

 return sum;
}

 19

COMPUTE:
sum = 0;
i = 0;

LOOP_TEST:
n = getProp(arr, 'length'); // l = a.length
t = ge(i, n);
if t goto LOOP_END // while (i < a.length)

LOOP_BODY:
v = getProp(arr, i);
sum = add(sum, v); // sum += arr[i]
i = add(i, 1) // i += 1
goto LOOP_TEST

LOOP_END:
return sum

IR of the compute Function

 20

Recording Traces

COMPUTE:
sum = 0;
i = 0;

LOOP_TEST: // Trace recording begins here
n = getProp(arr, 'length');
t = ge(i, n);
if t goto LOOP_END

LOOP_BODY:
v = getProp(arr, i);
sum = add(sum, v);
i = add(i, 1)
goto LOOP_TEST // This backwards branch can
 // trigger trace recording if
LOOP_END: // executed often enough

 21

Primitive Calls

COMPUTE:
sum = 0;
i = 0;

LOOP_TEST:
n = getProp(arr, 'length'); // Primitive calls will be
t = ge(i, n); // inlined into the trace
if t goto LOOP_END

LOOP_BODY:
v = getProp(arr, i);
sum = add(sum, v);
i = add(i, 1)
goto LOOP_TEST

LOOP_END:

 22

//LOOP_TEST:

 //n = getProp(a, 'length');
 if !is_array (a) => exit trace
 n = get_array_len(a)

 //t = ge(i, n);
 if !is_int(i) => exit trace
 if !is_int(n) => exit trace
 t = ge_int32(i, n)

 if t goto LOOP_END

//LOOP_BODY:

 //v = getProp(a, i);
 if !is_array (a) => exit trace
 if !is_int(i) => exit trace
 v = get_array_elem(a, i)

 //sum = add(sum, v);
 if !is_int(sum) => exit trace
 if !is_int(v) => exit trace
 sum = add_int32(sum, v)

if int_overflow => exit trace

 //i = add(i, 1)
 if !is_int(i) => exit trace
 i = add_int32(i, 1)

if int_overflow => exit trace

 goto LOOP_TEST // Return to the trace head

 23

//LOOP_TEST:

 //n = getProp(a, 'length');
 if !is_array (a) => exit trace
 n = get_array_len(a)

 //t = ge(i, n);
 if !is_int(i) => exit trace
 if !is_int(n) => exit trace
 t = ge_int32(i, n)

 if t goto LOOP_END

//LOOP_BODY:

 //v = getProp(a, i);
 if !is_array (a) => exit trace
 if !is_int(i) => exit trace
 v = get_array_elem(a, i)

 //sum = add(sum, v);
 if !is_int(sum) => exit trace
 if !is_int(v) => exit trace
 sum = add_int32(sum, v)

if int_overflow => exit trace

 //i = add(i, 1)
 if !is_int(i) => exit trace
 i = add_int32(i, 1)

if int_overflow => exit trace

 goto LOOP_TEST // Return to the trace head

 24

Trace Optimization

● Through monitoring, we can observe that
● arr is an array of integers at the entry to compute
● The length of arr is 1000
● Integers in arr reside in range [0, 999]

● From JS semantics, we have that:
● i, sum are integer values at initialization
● The result of int+int is int
● Array lengths are always Uint32

● By type propagation, we can infer that:
● i, sum will remain Uint32 throughout their lifetime

 25

//LOOP_TEST:

 //l = getProp(a, 'length');
 //if !is_array (a) => exit We know a is an array on trace entry
 n = get_array_len(a)

 //t = ge(i, n);
 //if !is_int(i) => exit We know i is integer on trace entry
 //if !is_int(n) => exit Array lengths are always UInt32
 t = ge_uint32(i, n)

 if t goto LOOP_END

//LOOP_BODY:

 //v = getProp(a, i);
 //if !is_array (a) => exit As before
 //if !is_int(i) => exit As before
 v = get_array_elem(a, i)

 //sum = add(sum, v);
 //if !is_int(sum) => exit Type known before trace
 //if !is_int(v) => exit from monitoring, know v to be int
 sum = add_int32(sum, v) // Type of v does not change here

if int_overflow => exit trace

 //i = add(i, 1)
 //if !is_int(i) => exit As before
 i = add_int32(i, 1) // Type of i does not change here

if int_overflow => exit Because i < 0xFFFFFFFF

 goto LOOP_TEST // Return to the trace head

 26

Invalidation

● When traces make type observations, there is a
danger: the type profile could change

● In our example, should someone store a string
in arr, the type of array elements would change
● e.g.: arr[0] = “foo”
● arr now contains both strings and integers

● If this happens, optimized code should be
invalidated (easy in a tracing JIT)

● Code only reoptimized if called again

 27

The Cost of Monitoring

● There's a problem with monitoring
● Need to maintain a fully-accurate type profile
● Must account for all property writes

● Invalid optimizations will cause bugs

● Recording every property write would be slow
● Must save time, but still account for everything

 28

p = { x:1.5, y:1.5 } // 2D point
v = { x:0.2, y:0.3 } // Velocity vector

// Move our point in function of time
for (;;)
{
 dT = deltaTime()
 p.x = p.x + v.x * dT // Don't want to check
 p.y = p.y + v.y * dT // both of these writes!
}

 29

p = { x:1.5, y:1.5 } // x, y: float
v = { x:0.2, y:0.3 } // x, y: float

// Move our point in function of time
for (;;)
{
 dT = deltaTime() // dT: float
 p.x = p.x + v.x * dT // x = float + float * float
 p.y = p.y + v.y * dT // y = float + float * float
}

 30

Monitoring Cleverly

● Don't have to record every property write
● Once we make an observation about a type, only

care to know that this observation remains valid
● Only need to monitor writes that may violate past

observations
● Observations provide information we can use to

optimize (and remove) monitoring code

● Building a walled garden: type observations are
used justify the validity of other observations
● Minimal set of checks to guarantee safety

 31

Type Inference

● How is the design of Higgs different from Mozilla's type
inference?
● Higgs does not do global type analysis
● No fixed-point, no complex TI algorithm

● Higgs does linear type propagation along traces
● Like constant propagation, simple algorithm

● Access to potentially more accurate information than
global type analysis can provide
● Type analyses are forced to be conservative
● Imprecisions slip into the model
● May overgeneralize type sets

 32

Continuous Optimization

● Programs may perform different tasks at
different times

● Long-running programs may be worth re-
optimizing

● e.g.: GIMP-like image editor, operates on
different image formats
● Want to re-optimize image-processing kernels

● Could rebuild type profiles, partially or entirely
● e.g.: scan the heap, like garbage collection

 33

Conclusion

● Higgs will use monitoring to extract accurate
type information from programs

● Goal: optimize programs to a greater extent
than otherwise achievable

● Cost of accurate type profiling can be offset
(optimized away) by the JIT

● Higgs makes interesting technical choices
along the way, explores the space of JIT design
possibilities

 34

Visiting Mozilla

● Visiting Mountain View office until Feb 15th
● Here to learn about Mozilla JIT technology

● Optimizations done (both high and-low-level)
● Specifics of your tracing JIT, how to do this well
● Catching details I might be overlooking

● If you'd like to discuss compilers, programming
languages or microcontrollers let's talk
● e.g.: /((food|beer) talk)+/

 35

github.com/maximecb/Higgs

maximechevalierb@gmail.com

maximecb on #ionmonkey

pointersgonewild.wordpress.com

Love2Code on twitter

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

