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Abstract. Dynamic typing is an important feature of dynamic pro-
gramming languages. Primitive operators such as those for performing
arithmetic and comparisons typically operate on a wide variety of in-
put value types, and as such, must internally implement some form of
dynamic type dispatch and type checking. Removing such type tests is
important for an efficient implementation.
In this paper, we examine the effectiveness of a novel approach to reduc-
ing the number of dynamically executed type tests called context-driven

basic block versioning. This simple technique clones and specializes ba-
sic blocks in such a way as to allow the compiler to accumulate type
information while machine code is generated, without a separate type
analysis pass. The accumulated information allows the removal of some
redundant type tests, particularly in performance-critical paths.
We have implemented intraprocedural context-driven basic block ver-
sioning in a JavaScript JIT compiler. For comparison, we have also im-
plemented a classical flow-based type analysis operating on the same
concrete types. Our results show that basic block versioning performs
better on most benchmarks and removes a large fraction of type tests
at the expense of a moderate code size increase. We believe that this
technique offers a good tradeoff between implementation complexity and
performance, and is suitable for integration in production JIT compilers.

1 Introduction

Dynamic programming languages make heavy use of late binding in their seman-
tics. In essence this means doing at run time what can be done before run time in
other programming languages, for example type checking, type dispatch, func-
tion redefinition, code linking, program evaluation (e.g. eval), and compilation
(e.g. JIT compilation). In dynamic programming languages such as JavaScript,
Python, Ruby and Scheme, there are no type annotations on variables and types
are instead associated with values. Primitive operations, such as +, must verify
that the operand values are of an acceptable type (type checking) and must use
the types of the values to select the operation, such as integer addition, float-
ing point addition, or string concatenation (type dispatching). We will use the
generic term type test to mean a run time operation that determines if a value
belongs to a given type. Type checking and dispatching are built with type tests.



VMs for dynamic programming languages must tackle the run time overhead
caused by the dynamic features to achieve an efficient execution. Clever type
representation and runtime system organization can help reduce the cost of the
dynamic features. In this paper we focus on reducing the number of type tests
executed, which is a complementary approach.

Static type analyses which infer a type for each variable can help remove
and in some cases eliminate type test cost. However, such analyses are of lim-
ited applicability in dynamic languages because of the run time cost and the
presence of generic operators. A whole program analysis provides good preci-
sion, compared to a more local analysis, but it is time consuming, which is an
issue when compilation is done during program execution. Moreover, the results
are generally invalidated when functions are redefined and code is dynamically
loaded or evaluated, requiring a new program analysis. This often means that
analysis precision must be traded for speed. Intraprocedural analyses are a good
compromise when such dynamic features are used often, the program is large,
the running time is short or a simple VM design is desired. The complexity of the
type hierarchy for the numerical types may negatively impact the precision of the
type analysis due to its conservative nature. To implement the numerical types
of the language or for performance, a VM may use several concrete types for
numbers (e.g. fixed precision integers, infinite precision integers, floating point
numbers, complex numbers, etc). The VM automatically converts from one rep-
resentation to another when an operator receives mixed-representation operands
or limit cases are encountered (e.g. overflows). Variables containing numbers will
often have to be assigned a type which is the union of some concrete numerical
types (e.g. int ∪ float) if they store the result of an arithmetic operator. This
means that a type dispatch will have to be executed when this variable is used
as an operand of another arithmetic operator. This is an important issue due
to the frequent use of arithmetic in typical programs (for example an innocuous
looking i++ in a loop will typically require a type dispatch and overflow check).

We propose a new approach which reduces the number of type tests by elim-
inating those that are redundant within each function. Basic block versioning
aims to be a simple and efficient technique mixing code generation, analysis and
optimization. Section 2 explains the basic block versioning approach in more de-
tails. An implementation of our approach in a JavaScript compiler is described
in Section 3 and evaluated in Section 4. Related work is presented in Section 5.

2 Basic Block Versioning

The basic block versioning approach generates one or more versions of each
live basic block based on type information derived from the type tests executed
by the code. The type analysis and code generation are performed together,
generating on-demand new versions of blocks specialized to the typing context
of predecessor blocks.

An important difference between this approach and traditional type analyses
is that basic block versioning does not compute a fixed-point on types, but rather
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fun
tion f(n) {if (n<0) n = n+1;return n+1;

}

Fig. 1. Definition for function f and the corresponding high-level control flow graph.

Fig. 2. Control flow graph after the inlining of the primitive operators neg? and inc.

computes a fixed-point on the generation of new block versions, each associated
with a configuration of incoming types. Values which have different types at the
same program point are handled more precisely with basic block versioning. In
a traditional type analysis the union of the possible types would be assigned to
the value, causing the analysis to be conservative. With basic block versioning,
distinct basic blocks will be created for each type tested previously, allowing a
more precise tracking of types. Because versions are created on demand, only
versions for the relevant type combinations are created.

To illustrate this approach we will use a simple example in a hypothetical
dynamically typed language similar only in syntax to JavaScript. Consider the
function f whose definition and corresponding high-level control flow graph are
shown in Figure 1. Lets assume that there are only two concrete types for num-
bers: int, a fixed precision integer, and float, a floating point number.1 The
value of parameter n must be one of these two types, otherwise it is a type error.
The primitive operations neg?(n) and inc(n) must include a type dispatch to
select the appropriate operation based on the concrete type of n. Inlining these
primitive operations makes the type tests explicit as shown in the control flow
graph in Figure 2. Note that basic block X has been expanded to basic blocks
A-D, while Y has been expanded to E-H, and Z has been expanded to I-L. Note
that for simplicity we will assume that the inc int(n) operation yields an int

(i.e. there is no overflow check).
Basic block versioning starts compiling basic block A with a context where

value n is of an unknown type. This will generate the code for the int?(n)

type test and will schedule the compilation of a version of block B, called B
¬int,

1 Note that JavaScript has a single type for numbers, which corresponds to IEEE 64-
bit floating point numbers, but an implementation of JavaScript could implement
numbers with these two concrete types to benefit from the performance of integer
arithmetic for integer loop iteration variables and array indexing.
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where the value n is known to not be an int and will schedule the compilation of
a version of block C, called Cint, where the value n is known to be an int. Our
use of subscripts is a purely notational way of keeping track of the type context
information, which only needs to give information on n in this example. When
basic block Cint is compiled, code is generated for the neg? int(n) test and
this schedules the compilation of versions of blocks E and I, called Eint and Iint
respectively, where the value n is known to be an int. Note that the compilation
of B

¬int will cause the compilation of Dfloat, which will also schedule the
compilation of versions of blocks E and I but in a different context, where the
value n is known to be a float (blocks Efloat and Ifloat respectively).

The type tests in the four blocks Eint, Efloat, Iint and Ifloat can be
removed and replaced by direct jumps to the appropriate destination blocks.
For example Eint becomes a direct jump to Gint and Efloat becomes a direct
jump to Ffloat. Because Gint and Hfloat jump respectively to Iint and Ifloat,
the type tests in those blocks are also removed. Note that the final generated
code implements the same control flow graph as Figure 3. Two of the three type
dispatch operations in the original code have been removed.

Fig. 3. Final control flow of function f after basic block versioning.

Let us now consider what would happen if the inc int(n) operations de-
tected integer overflow and yielded a float result in that case. Then the com-
pilation of basic block Gint would schedule two versions of the successor basic
block I: Iint for the case where there is no overflow, and Ifloat for the case where
there is an overflow. Due to the normal removal of type tests, when inc int(n)

would overflow, a float would be stored in n followed by a direct jump to block
Lfloat. Thus the only change in the control flow of Figure 3 is that block Gint
has an edge to Lfloat in addition to Kint. So here too a single type dispatch is
needed in function f.

In theory, the number of possible type configurations in a context grows
combinatorially with the number of live values whose type is being accounted
for and the number of types they can have. We believe that a combinatorial
explosion is unlikely to be a problem in practice because typically the number
of values live at a given program point is small and the number of possible types
of a value is small.

There are pathological cases where a large number of block versions are
needed to account for all the possible incoming type combinations. To prevent
such occurrences, a simple approach is to place an arbitrary limit per block on the
number of versions that are compiled. Once this limit is hit for a given block,
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a general version of the block will be compiled, which makes no assumptions
about incoming types, i.e. all values are of unknown type.

If more versions of a block would be required than the block version limit
allows, it is advantageous to compile the versions which will be executed most
often. This can be done by monitoring the frequency of execution of each basic
block (with a counter per block) prior to the JIT compilation. Generating linear
machine code sequences along hot paths first has the beneficial effect that it will
tend to prioritize the compilation of block versions for type combinations that
occur more frequently at run time. This strategy is used in our experiments.

An indirect benefit of our basic block versioning approach is that it auto-
matically unrolls some of the first iterations of loops in such a way that type
tests are hoisted out of loop bodies. For example, if variables of unknown type
are used unconditionnaly in a loop, their type will be tested inside the first iter-
ation of the loop. Once this test is performed in the first loop iteration, the type
information gained will allow the loop body to avoid the redundant type tests
for the remaining iterations.

3 Implementation in Higgs

We have implemented basic block versioning inside a JavaScript virtual machine
called Higgs. This virtual machine comprises an interpreter and a JIT com-
piler targeted at x86-64 POSIX platforms. The current implementation of Higgs
supports most of the ECMAScript 5 specification [1], with the exception of the
with statement, property attributes and getter-setter properties. Its runtime and
standard libraries are self-hosted, written in an extended dialect of ECMAScript
with low-level primitives. These low-level primitives are special IR instructions
which allow us to express type tests as well as integer and floating point machine
instructions in the implementation language.

In Higgs, the interpreter is used for profiling, and as a default, unoptimized
mode of execution. Functions are parsed into an abstract syntax tree, and lazily
compiled to an Static Single Assignment (SSA) Intermediate Representation
(IR) when they are first called. The interpreter then executes code in SSA form
directly. As code is executed by the interpreter, counters on basic blocks are
incremented every time a given block is executed. Frequency counts for each
potential callee are also collected at call sites.

The JIT compiler is triggered when the execution count for a function entry
block or loop header reaches a fixed threshold (currently set to 800). Callees are
first aggressively inlined into the function to be compiled. This is done by sub-
stituting the IR of callees at call sites. Calls are currently inlined only if profiling
data indicates that they are monomorphic, and the callee is 30 basic blocks or
less, which enables inlining of most runtime primitives. Call sites belonging to
blocks with higher execution frequencies are prioritized for inlining. Once inlin-
ing is complete, the fused IR containing inlined callees is then optimized using
simple subgraph substitution patterns before machine code generation proceeds.
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Algorithm 1 Code generation with basic block versioning

1: procedure genFun(assembler, function)
2: workList← ∅ ⊲ Stack of block versions to be compiled
3: versionList← ∅ ⊲ List of existing block versions
4: getLabel(function.entryBlock, ∅, workList, versionList) ⊲ Begin compilation
5: while workList not empty do

6: block, ctx, label ← workList.pop()
7: assembler.addLabel(label) ⊲ Insert the label for this block
8: if block.execCount is 0 then

9: genStub(assembler, block, ctx, label)
10: else

11: for instr in block.instrs do ⊲ Generate code for each instruction
12: genInstr(assembler, instr, ctx, workList, versionList);
13: end for

14: end if

15: end while

16: end procedure

17: procedure getLabel(block, ctx, workList, versionList)
18: if numVersions(block) ≥ maxvers then ⊲ If the version limit for this block

was reached
19: bestMatch ← findBestMatch(block, ctx, versionList);
20: if bestMatch 6= null then ⊲ If a compatible match was found
21: return bestMatch
22: else

23: ctx ← ∅ ⊲ Make a generic version accepting all incoming contexts
24: end if

25: end if

26: label ← newLabel();
27: workList.push(〈block, ctx, label〉); ⊲ Queue the new version to be compiled
28: versionList.append(〈block, ctx, label〉); ⊲ Add the new block version to the list
29: return label
30: end procedure
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Algorithm 2 Code generation with basic block versioning

31: procedure AddInt32.genInstr(assembler, instr, ctx, workList, versionList)
32: assembler.addInt32(instr.getArgs()) ⊲ Generate the add machine instruction
33: ctx.setOutType(instr, int32) ⊲ The output type of AddInt32 is always int32.

If an overflow occurs, the result is recomputed using AddFloat64
34: end procedure

35: procedure IsInt32.genInstr(assembler, instr, ctx, workList, versionList)
36: argType ← ctx.getType(instr.getArg(0))
37: if argType is int32 then

38: ctx.setOutType(instr, true)
39: else if argType 6= ⊤ then

40: ctx.setOutType(instr, false)
41: else

42: assembler.isInt32(instr.getArgs()) ⊲ Generate code for the type test
43: ctx.setOutType(instr, const)
44: end if

45: end procedure

46: procedure Jump.genInstr(assembler, instr, ctx, workList, versionList)
47: label ← getLabel(instr.target, ctx, workList, versionList)
48: assembler.jump(label)
49: end procedure

50: procedure IfTrue.genInstr(assembler, instr, ctx, workList, versionList)
51: arg ← instr.getArg(0)
52: argType ← ctx.getType(arg)
53: trueCtx ← ctx.copy() ⊲ New context for the true branch
54: if arg instanceof IsInt32 then

55: trueCtx.setType(arg.getArg(0), int32)
56: end if

57: if argType is true then

58: trueLabel ← getLabel(instr.trueTarget, trueCtx, workList, versionList)
59: assembler.jump(trueLabel)
60: else if argType is false then

61: falseLabel ← getLabel(instr.falseTarget, ctx, workList, versionList)
62: assembler.jump(falseLabel)
63: else

64: trueLabel ← getLabel(instr.trueTarget, trueCtx, workList, versionList)
65: falseLabel ← getLabel(instr.falseTarget, ctx, workList, versionList)
66: assembler.compare(arg, true) ⊲ Compare the argument to true
67: assembler.jumpIfEqual(trueLabel)
68: assembler.jump(falseLabel)
69: end if

70: end procedure
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Machine code generation (see Algorithm 1) begins with the function’s entry
block and entry context pair being pushed on top of a stack which serves as a
work list. This stack is used to keep track of block versions to be compiled, and
enable depth-first generation of hot code paths. Code generation proceeds by
repeatedly popping a block and context pair to be compiled off the stack. If the
block to be compiled has an execution count of 0, stub code is generated out of
line, which spills live variables, invalidates the generated machine code for the
function and exits to the interpreter. Otherwise, code is generated by calling
code generation methods corresponding to each IR instruction to be compiled
in the current block, in order.

As each IR instruction in a block is compiled, information is both retrieved
from and inserted into the current context. Information retrieved may be used
to optimize the compilation of the current instruction (e.g. eliminate type tests).
Instructions will also write their own output type in the context if known. The
last instruction of a block, which must be a branch instruction, may potentially
push additional compilation requests on the work stack. More specifically, branch
instructions can request an assembler label for a version of a block corresponding
to the current context at the branch instruction. If such a version was already
compiled, the label is returned immediately. Otherwise, a new label is generated,
the block and the current context are pushed on the stack, to be compiled later.

To avoid pathological cases where a large number of versions could be gen-
erated for a given basic block, we limit the number of versions that may be
compiled. This is done with the maxvers parameter, which specifies how many
versions can be compiled for any single block. Once this limit is hit for a par-
ticular block, requests for new versions of this block will first try to find if an
inexact but compatible match for the incoming context can be found. An exist-
ing version is compatible with the incoming context if the value types assumed
by the existing version are the same as, or supertypes of, those specified in the
incoming context. If a compatible match is found, this match will be returned.
If not, a generic version of the block will be generated, which can accept all
incoming type combinations. When the maxvers parameter is set to zero, basic
block versioning is disabled, and only the generic version is generated.

3.1 Type tags and runtime primitives

The current version of Higgs segregates values into a few categories based on type
tags [13]. These categories are: 32-bit integers (int32), 64-bit floating point val-
ues (float64), garbage-collected references inside the Higgs heap (refptr), raw
pointers to C objects (rawptr) and miscellaneous JavaScript constants (const).
These type tags form a simple, first-degree notion of types which we use to drive
the basic block versioning approach. The current implementation of basic block
versioning in Higgs does not differentiate between references to object, arrays
and functions, but instead lumps all of these under the reference pointer cate-
gory. We do, however, distinguish between the boolean true and false constants
to enable the propagation of type test results.
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We believe that this choice of a simple type representation is a worthwhile
way to investigate the effectiveness and potential of basic block versioning. Higgs
implements JavaScript operators as runtime library functions written in an ex-
tended dialect of JavaScript, and most of these functions use type tags to do
dynamic dispatch. As such, eliminating this first level of type tests is crucial to
improving the performance of the system as a whole. Extending the system to
use a more precise representation of types is part of future work.fun
tion $rt_add(x, y) {if ($ir_is_i32(x)) { // If x is integerif ($ir_is_i32(y)) {if (var r = $ir_add_i32_ovf(x, y))return r;else // Handle the overflow casereturn $ir_add_f64($ir_i32_to_f64(x),

$ir_i32_to_f64(y));

} else if ($ir_is_f64(y))return $ir_add_f64($ir_i32_to_f64(x), y);

} else if ($ir_is_f64(x)) { // If x is floating pointif ($ir_is_i32(y))return $ir_add_f64(x, $ir_i32_to_f64(y));else if ($ir_is_f64(y))return $ir_add_f64(x, y);

}

// Evaluate arguments as strings and concatenate themreturn $rt_strcat($rt_toString(x), $rt_toString(y));

}

Fig. 4. Implementation of the + operator

Figure 4 illustrates the implementation of the primitive + operator. As can be
seen, this function makes extensive use of low-level type test primitives such as
$ir is i32 and $ir is f64 to implement dynamic dispatch based on the type
tags of the input arguments. All other arithmetic and comparison primitives
implement a similar dispatch mechanism.

3.2 Flow-based representation analysis

To provide a point of comparison and contrast the capabilities of basic block
versioning with that of more traditional type analysis approaches, we have im-
plemented a forward flow-based representation analysis which computes a fixed-
point on the types of SSA values. The analysis is an adaptation of Wegbreit’s
algorithm as described in [26]. It is an intraprocedural constant propagation
analysis which propagates the types of SSA values in a flow-sensitive manner.
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⊥ (∅, initial)

⊤ (ξ, unknown/any)

refptr rawptrint32 float64

const

true false

Fig. 5. Type lattice used by the representation analysis

Pseudocode for this analysis and some of its transfer functions is shown in Ap-
pendix A.

The representation analysis uses the same type representation (see Figure
5) as our basic block versioning implementation, and has similar type analysis
capabilities. It is able to gain information from type tests and forward this in-
formation along branches. It is also able to deduce, in some cases, that specific
branches will not be executed and ignore the effects of code that was determined
dead.

We have also extended the flow-based algorithm to ignore basic blocks which
are unexecuted (have an execution count of 0) at analysis time. This allows the
analysis to ignore some code paths not executed up to now, which is useful in
some cases, since primitive language operators often have multiple paths which
can result in different output types. If presumed dead blocks turn out to be
executed later, analysis results and associated compiled code will be invalidated
at run time. This was done to make the analysis more competitive with basic
block versioning which by construction ignores stubbed blocks, for which no
compiled code was generated.

3.3 Limitations

There are a few important limitations to the current implementation of basic
block versioning in Higgs. We do not, at this point, track the types of object prop-
erties. Global variables, which are properties of the global object in JavaScript,
are also untracked. We do not account for interprocedural flow of type informa-
tion either. That is, function parameter and return value types are assumed to
be unknown. Finally, the current implementation of Higgs does not implement
any kind of load-store forwarding optimization. These limitations are nontrivial
to tackle due to factors such as the late-bound nature of JavaScript, the poten-
tial presence of the eval construct, dynamic addition and deletion of properties
and the dynamic installation of getter-setter methods on object fields.
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The results presented in this paper are entirely based on an intraprocedural
implementation of basic block versioning which accounts only for the types of
local variables and temporaries, in combination with aggressive inlining of library
and method calls. Extending basic block versioning to take object identity, array
and property type information into account constitutes future work.

4 Evaluation

To assess the effectiveness of basic block versioning, we have used a total of
24 benchmarks from the classic SunSpider and Google V8 suites. A handful of
benchmarks from both suites were not included in our tests because the current
Higgs implementation does not yet support them.

Figure 6 shows counts of dynamically executed type tests across all bench-
marks for the representation analysis and for basic block versioning with various
block version limits. These counts are relative to a baseline which has the ver-
sion limit set to 0, and thus only generates a default, unoptimized version of
each basic block, without attempting to eliminate any type tests. As can be seen
from the counts, the analysis produces a reduction in the number of dynamically
executed type tests over the unoptimized default on every benchmark. The basic
block versioning approach does at least as well as the analysis, and almost always
significantly better. Surprisingly, even with a version cap as low as 1 version per
basic block, the versioning approach is often competitive with the representation
analysis.

Raising the version cap reduces the number of tests performed with the
versioning approach in a seemingly asymptotic manner as we get closer to the
limit of what is achievable with our implementation. The versioning approach
does remarkably well on the bits-in-byte benchmark, with a reduction in the
number of type tests by a factor of over 50. This benchmark (see Figure 7) is an
ideal use case for our versioning approach. It is a tight loop performing bitwise
and arithmetic operations on integers which are all stored in local variables.
The versioning approach performs noticeably better than the analysis on this
test because it is able to hoist a type test on the function parameter b out of a
critical loop. The type of this parameter is initially unknown when entering the
function. The analysis on its own cannot achieve this, and so must repeat the test
every loop iteration. Note that neither the analysis nor the basic block versioning
approach need to test the type of c at run time because the variable is initialized
to an integer value before loop entry, and integer overflow never occurs, so the
overflow case remains a stub. The bitwise-and benchmark operates exclusively
on global variables, for which our system cannot extract types, and so neither the
type analysis nor the versioning approach show any improvement over baseline
for this benchmark.

A breakdown of relative type test counts by kind, averaged accross all bench-
marks (using the geometric mean) is shown in Figure 8. We see that the version-
ing approach is able to achieve better results than the representation analysis
across each kind of type test. The is refptr category shows the least improve-
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Fig. 6. Counts of dynamic type tests (relative to baseline)
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fun
tion bitsinbyte(b) {var m = 1, c = 0;while(m < 0x100) {if(b & m) c++;

m <<= 1;

}return c;

}fun
tion TimeFunc(func) {var x, y, t;for(var x = 0; x < 350; x++)for(var y = 0; y < 256; y++) func(y);

}

TimeFunc(bitsinbyte );

Fig. 7. SunSpider bits-in-byte benchmark

analysis maxvers=1 maxvers=2 maxvers=5 maxvers=∞
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100%
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Fig. 8. Type test counts by kind of type test (relative to baseline)
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ment. This is likely because property access primitives are very large, and thus
seldom inlined, limiting the ability of both basic block versioning and the analy-
sis to propagate type information for reference values. We note that versioning is
much more effective than the analysis when it comes to eliminating is float64

type tests. This is probably because integer and floating point types often get
intermixed, leading to cases where the analysis cannot eliminate such tests. The
versioning approach has the advantage that it can replicate and detangle integer
and floating point code paths. A limit of 5 versions per block eliminates 64% of
type tests on average (geometric mean), compared to 33% for the analysis.

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 4 5 6 7 8 9 ≥ 10

Fig. 9. Relative occurrence of block version counts

Figure 9 shows the relative proportion of blocks for which different numbers
of versions were generated, averaged accross all benchmarks (geometric mean).
As one might expect, the relative proportion of blocks tends to steadily decrease
as the number of versions is increased. Most blocks only have one or two versions,
and less than 9% have 5 versions or more. There are very few blocks which have
10 versions or more. These are a small minority, but such pathological cases do
occur in practice.

The function generating the most block versions in our tests is DrawLine from
the 3d-cube benchmark, which produces 32 versions of one particular block. This
function draws a line in screen space between point coordinates x1,y1 and x2,y2.
Multiple different values are computed inside DrawLine based on these points.
Each of the coordinate values can be either integer or floating point, which results
in a situation where there are several live variables, all of which can have two
different types. This creates an explosion in the number of versions of blocks
inside this function as basic block versioning tries to account for all possible
type combinations of these values. In practice, the values are either all integer,
or all floating point, but our implementation of basic block versioning is currently
unable to take advantage of this helpful fact. We have experimentally verified
that, in fact, only 17 of the 32 versions generated in DrawLine are actually
executed. A strategy for addressing this problem is discussed in Section 6.
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Fig. 10. Code size growth for different block version limits
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The effects of basic block versioning on the total generated code size are
shown in Figure 10. It is interesting to note that the representation analysis
almost always results in a slight reduction in code size. This is because the
analysis allows the elimination of type tests and the generation of more optimized
code, which is often smaller. On the other hand, basic block versioning can
generate multiple versions of basic blocks, which results in more generated code.
The volume of generated code does not increase linearly with the block version
cap. Rather, it tapers off as a limited number of versions tends to be generated
for each block. Even without a block version limit, the code size is less than
double that of the baseline in most cases. A limit of 5 versions per block results
in a mean code size increase of 69%.

5 Related Work

There have been multiple efforts to devise type analyses for dynamic languages.
The Rapid Atomic Type Analysis (RATA) [17] is an intraprocedural flow-sensitive
analysis based on abstract interpretation which aims to assign unique types to
each variable inside of a function. Attempts have also been made to define formal
semantics for a subset of dynamic languages such as JavaScript [4], Ruby [10]
and Python [3], sidestepping some of the complexity of these languages and mak-
ing them more amenable to traditional type inference techniques. There are also
flow-based interprocedural type analyses for JavaScript based on sophisticated
type lattices [15][16]. Such analyses are usable in the context of static code anal-
ysis, but take too long to execute to be usable in compilation and do not deal
with the complexities of dynamic code loading.

More recently, work done by Brian Hackett et al. resulted in an interpro-
cedural hybrid type analysis for JavaScript suitable for use in production JIT
compilers [14]. This analysis represents a great step forward for dynamic lan-
guages, but as with other type analyses, must assign one type to each value,
which makes it vulnerable to imprecise type information polluting analysis re-
sults. Basic block versioning could potentially help improve on the results of such
an analysis by hoisting tests out of loops and generating multiple optimized code
paths where appropriate.

Trace compilation aims to record long sequences of instructions executed in-
side of hot loops [12]. Such sequences of instructions often make optimization
easier. Type information can be accumulated along traces and used to specialize
the code to remove type tests [11], overflow checks [23] and unnecessary alloca-
tions [6]. Tracing is similar to basic block versioning, in that context updating
works on essentially linear code fragments and accumulates type information
during compilation. However, trace compilation incurs several difficulties and
corner cases in practice, such as the potential for trace explosion if there is a
large number of control-flow paths going through a loop, and poor capability
to deal with code that is not loop-based. Work on trace regions by Bebenita et
al. [5] introduces traces with join nodes. These join nodes can potentially elimi-
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nate tail duplication among traces and avoid the problem of trace explosion, but
also makes the compiler architecture more complex.

Basic block versioning bears some similarities to classic compiler optimiza-
tions such as loop unrolling [9], loop peeling [24], and tail duplication, in that
it achieves some of the same results. Tail duplication and loop peeling are used
in the formation of hyperblocks [18], which are sets of basic blocks grouped to-
gether, such that control-flow may enter only into one of the blocks, but may exit
at multiple locations. This structure was designed to facilitate the optimization
of large units of code for VLIW architectures. A parallel can be drawn between
basic block versioning and Partial Redundancy Elimination (PRE) [19] in that
the versioning approach seeks to eliminate and hoists out of loops a specific kind
of redundant computation, that of dynamic type tests.

Basic block versioning is also similar to the idea of node splitting [25]. This
technique is an analysis device designed to make control-flow graphs reducible
and more amenable to analysis. The path splitting algorithm implemented in
the SUIF compiler [22] aims at improving reaching definition information by
replicating control-flow nodes in loops to eliminate joins. Unlike basic block ver-
sioning, these algorithm cannot gain information from type tests. The algorithms
as presented are also specifically targeted at loops, while basic block versioning
makes no special distinction. Similarly, a static analysis which replicates code to
eliminate conditional branches has been developed [20]. This algorithm operates
on a low-level intermediate representation, is intended to optimize loops and
does not specifically eliminate type tests.

Customization is a technique developed to optimize the SELF programming
language [7] which compiles multiple copies of methods, specialized based on
the receiver object type. Similarly, type-directed cloning [21] clones methods
based on argument types, which can produce more specialized code using richer
type information. The work of Maxime Chevalier-Boisvert et al. on Just-In-
Time (JIT) specialization for MATLAB [8] and similar work done for the MaJIC
MATLAB compiler [2] tries to capture argument types to dynamically compile
optimized copies of functions. All of these techniques are forms of type-driven
code duplication aimed at enhancing type information. Basic block versioning
operates at a lower level of granularity, which allows it to find optimization
opportunities inside of method bodies by duplicating code paths.

6 Future Work

Our current implementation only tracks type information intraprocedurally. It
would be desirable to extend basic block versioning in such a way that type
information can cross function call boundaries. This could be accomplished by
allowing functions to have multiple entry point blocks, specialized based on con-
text information coming from callers. Similarly, call continuation blocks (return
points) could also be versioned to allow information about return types to flow
back into the caller.
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Another obvious extension of basic block versioning would be to collect more
detailed type information. For example, we may wish to propagate information
about global variable types, object identity and object field types. It may also
be desirable, in some cases, to know the exact value of some variable or object
field, particularly if this value is likely to remain constant. Numerical range
information could potentially be collected to help eliminate bound and overflow
checks.

Basic block versioning, as we have implemented it, sometimes generates ver-
sions that account for type combinations that never occur in practice. This could
potentially be addressed by generating stubs for the targets of cloned conditional
branches. Higgs already produces stubs for unexecuted blocks, but generates all
requested versions of a block if the block was ever executed in the past. Produc-
ing stubs for cloned branches would delay the generation of machine code for
these branch targets until we know for a fact that they are executed, avoiding
code generation for unnecessary code paths. The choice of where to generate
stubs could potentially be guided by profiling data.

Some of the information accumulated and propagated by basic block version-
ing may not actually be useful for optimization. This is likely to become a bigger
problem if the approach is extended to work accross function call boundaries, or
if more precise type and constant information is accumulated. An interesting av-
enue may be to choose which information to propagate based on usefulness. That
is, the most frequently executed type tests are probably the ones we should focus
our resources on. These tests should be dynamically identified through profiling
and used to decide which information to propagate.

7 Conclusion

We have introduced a novel compilation technique called context-driven basic
block versioning. This technique combines code generation with type analysis
to produce more optimized code through the accumulation of type information
during compilation. The versioning approach is able to perform optimizations
such as automatic hoisting of type tests and efficiently detangles code paths
along which multiple numerical types can occur. Our experiments show that in
most cases, basic block versioning eliminates significantly more dynamic type
tests than is possible using a traditional flow-based type analysis. It eliminates
64% of type tests on average with a limit of 5 versions per block, compared to
33% for the analysis, and never performs worse than such an analysis.

Basic block versioning trades code size for performance. Such a tradeoff is of-
ten desirable, particularly for performance-critical application kernels. We have
empirically demonstrated that although our implementation of basic block ver-
sioning does increase code size, the resulting increase is reasonably moderate,
and can easily be limited with techniques as simple as a hard limit on the number
of versions per basic block. In our experiments, a limit of 5 versions per block
results in a mean code size increase of 69%. More sophisticated implementa-
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tions that adjust the amount of code replication allowed based on the execution
frequency of functions are certainly possible.

Basic block versioning is a simple and practical technique suitable for inte-
gration in real-world compilers. It requires little implementation effort and can
offer important advantages in JIT-compiled environments where type analysis
is often difficult. Dynamic languages, which perform a large number of dynamic
type tests, stand to benefit the most.

Higgs is open source and the code used in preparing this publication is avail-
able on GitHub2.
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A First Appendix

Algorithm 3 Type propagation analysis

1: procedure typeProp(function)
2: outTypes ← ∅
3: edgeTypes ← ∅
4: visited ← ∅ ⊲ Set of visited control-flow edges
5: workList ← {〈null, function.entryBlock〉}
6: while workList not empty do

7: edge ← workList.dequeue()
8: block ← edge.succ
9: if block.execCount is 0 then

10: continue ⊲ Ignore yet unexecuted blocks (stubs)
11: end if

12: visited.add(edge)
13: curTypes← ∅ ⊲ Merge type info from predecessors
14: for edge in block.incoming do

15: if edge in visited then

16: curTypes ← curTypes.merge(edgeTypes.get(edge))
17: end if

18: end for

19: for phiNode in block.phis do
20: t ← evalPhi(phiNode, block, visited)
21: curTypes.set(phi, t)
22: outTypes.set(phi, t)
23: end for

24: for instr in block.instrs do
25: t ← evalInstr(instr, curTypes)
26: curTypes.set(instr, t)
27: outTypes.set(instr, t)
28: end for

29: end while

30: return outTypes;
31: end procedure
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Algorithm 4 Transfer functions for the type propagation analysis

32: procedure evalPhi(phiNode, block, visited)
33: t← ⊥
34: for edge in block.incoming do

35: if edge in visited then

36: predType = getType(edgeTypes.get(edge), phiNode.getArg(edge))
37: if predType is ⊥ then

38: return ⊥
39: end if

40: t = t.merge(predType)
41: end if

42: end for

43: return t
44: end procedure

45: procedure AddInt32.evalInstr(instr, curTypes)
46: return int32 ⊲ The output type of AddInt32 is always int32. If an overflow

occurs, the result is recomputed using AddFloat64
47: end procedure

48: procedure IsInt32.evalInstr(instr, curTypes)
49: argType ← getType(curTypes, instr.getArg(0))
50: if argType is ⊥ then ⊲ If the argument type is not yet evaluated
51: return ⊥
52: else if argType is ⊤ then ⊲ If the argument type is unknown
53: return const
54: else if argType is int32 then

55: return true
56: else

57: return false
58: end if

59: end procedure

60: procedure IfTrue.evalInstr(instr, curTypes)
61: arg ← instr.getArg(0)
62: argType ← getType(curTypes, arg)
63: if argType is ⊥ then

64: return ⊥
65: end if

66: testVal ← null
67: testType ← ⊤
68: if arg instanceof IsInt32 then

69: testVal ← arg.getArg(0) ⊲ Get the SSA value whose type is being tested
70: testType ← int32
71: end if

72: if argType is true or argType is const or argType is ⊤ then

73: queueSucc(instr.trueTarget, typeMap, testVal, testType) ⊲ Queue the true
branch, and propagate the test value’s type (if applicable)

74: end if

75: if argType is false or argType is const or argType is ⊤ then

76: queueSucc(instr.falseTarget, typeMap, null, ⊤)
77: end if

78: return ⊥
79: end procedure
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